Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696472

RESUMO

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Marchantia , Complexo Mediador , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Complexo Mediador/metabolismo , Complexo Mediador/genética , Marchantia/genética , Marchantia/metabolismo , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993677

RESUMO

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response (SAR) through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that, under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that GI expression in epidermal cells is sufficient for proper SAR regulation.

3.
Genes (Basel) ; 12(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804638

RESUMO

The plant circadian clock has a pervasive influence on many aspects of plant biology and is proposed to function as a developmental manager. To do so, the circadian oscillator needs to be able to integrate a multiplicity of environmental signals and coordinate an extensive and diverse repertoire of endogenous rhythms accordingly. Recent studies on tissue-specific characteristics and spatial structure of the plant circadian clock suggest that such plasticity may be achieved through the function of distinct oscillators, which sense the environment locally and are then coordinated across the plant through both intercellular coupling and long-distance communication. This review summarizes the current knowledge on tissue-specific features of the clock in plants and their spatial organization and synchronization at the organismal level.


Assuntos
Relógios Circadianos , Plantas/genética , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Proteínas de Plantas/genética
4.
Proc Natl Acad Sci U S A ; 117(24): 13792-13799, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32471952

RESUMO

DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
Proc Natl Acad Sci U S A ; 116(43): 21893-21899, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31597737

RESUMO

Circadian clock circuitry intersects with a plethora of signaling pathways to adequately time physiological processes to occur at the most appropriate time of the day and year. However, our mechanistic understanding of how the clockwork is wired to its output is limited. Here we uncover mechanistic connections between the core clock component GIGANTEA (GI) and hormone signaling through the modulation of key components of the transduction pathways. Specifically, we show how GI modulates gibberellin (GA) signaling through the stabilization of the DELLA proteins, which act as negative components in the signaling of this hormone. GI function within the GA pathway is required to precisely time the permissive gating of GA sensitivity, thereby determining the phase of GA-regulated physiological outputs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Relógios Circadianos/fisiologia , Transdução de Sinais
6.
Nat Commun ; 10(1): 3916, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477705

RESUMO

Transcription by RNA polymerase V (Pol V) in plants is required for RNA-directed DNA methylation, leading to transcriptional gene silencing. Global chromatin association of Pol V requires components of the DDR complex DRD1, DMS3 and RDM1, but the assembly process of this complex and the underlying mechanism for Pol V recruitment remain unknown. Here we show that all DDR complex components co-localize with Pol V, and we report the cryoEM structures of two complexes associated with Pol V recruitment-DR (DMS3-RDM1) and DDR' (DMS3-RDM1-DRD1 peptide), at 3.6 Å and 3.5 Å resolution, respectively. RDM1 dimerization at the center frames the assembly of the entire complex and mediates interactions between DMS3 and DRD1 with a stoichiometry of 1 DRD1:4 DMS3:2 RDM1. DRD1 binding to the DR complex induces a drastic movement of a DMS3 coiled-coil helix bundle. We hypothesize that both complexes are functional intermediates that mediate Pol V recruitment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/ultraestrutura , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica , RNA de Plantas/química , RNA de Plantas/genética
7.
Dev Cell ; 49(6): 840-851.e8, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31105011

RESUMO

Integration of environmental signals with endogenous biological processes is essential for organisms to thrive in their natural environment. Being entrained by periodic environmental changes, the circadian clock incorporates external information to coordinate physiological processes, phasing them to the optimal time of the day and year. Here, we present a pivotal role for the clock component GIGANTEA (GI) as a genome-wide regulator of transcriptional networks mediating growth and adaptive processes in plants. We provide mechanistic details on how GI integrates endogenous timing with light signaling pathways through the global modulation of PHYTOCHROME-INTERACTING FACTORs (PIFs). Gating of the activity of these transcriptional regulators by GI directly affects a wide array of output rhythms, including photoperiodic growth. Furthermore, we uncover a role for PIFs in mediating light input to the circadian oscillator and show how their regulation by GI is required to set the pace of the clock in response to light-dark cycles.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Nicotiana/fisiologia , Fotoperíodo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
8.
Nat Struct Mol Biol ; 23(12): 1061-1069, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27922614

RESUMO

Circadian clocks are endogenous timekeeping networks that allow organisms to align their physiology with their changing environment and to perform biological processes at the most relevant times of the day and year. Initial feedback-loop models of the oscillator have been enriched by emerging evidence highlighting the increasing variety of factors and mechanisms that contribute to the generation of rhythms. In this Review, we consider the two major input pathways that connect the circadian clock of the model plant Arabidopsis thaliana to its environment and discuss recent advances in understanding of how transcriptional, post-translational and post-transcriptional mechanisms contribute to clock function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Relógios Circadianos , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Meio Ambiente , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Ativação Transcricional
9.
Nature ; 515(7527): 419-22, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25363766

RESUMO

Many organisms rely on a circadian clock system to adapt to daily and seasonal environmental changes. The mammalian circadian clock consists of a central clock in the suprachiasmatic nucleus that has tightly coupled neurons and synchronizes other clocks in peripheral tissues. Plants also have a circadian clock, but plant circadian clock function has long been assumed to be uncoupled. Only a few studies have been able to show weak, local coupling among cells. Here, by implementing two novel techniques, we have performed a comprehensive tissue-specific analysis of leaf tissues, and show that the vasculature and mesophyll clocks asymmetrically regulate each other in Arabidopsis. The circadian clock in the vasculature has characteristics distinct from other tissues, cycles robustly without environmental cues, and affects circadian clock regulation in other tissues. Furthermore, we found that vasculature-enriched genes that are rhythmically expressed are preferentially expressed in the evening, whereas rhythmic mesophyll-enriched genes tend to be expressed in the morning. Our results set the stage for a deeper understanding of how the vasculature circadian clock in plants regulates key physiological responses such as flowering time.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Ritmo Circadiano/fisiologia , Perfilação da Expressão Gênica , Células do Mesofilo/metabolismo , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/fisiologia
10.
Front Plant Sci ; 5: 202, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904603

RESUMO

The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...