Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 5740, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180449

RESUMO

Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation. Among the many qubit platforms, spin qubits in silicon quantum dots are promising for large-scale integration along with their nanofabrication capability. However, linking distant silicon quantum processors is challenging as two-qubit gates in spin qubits typically utilize short-range exchange coupling, which is only effective between nearest-neighbor quantum dots. Here we demonstrate a two-qubit gate between spin qubits via coherent spin shuttling, a key technology for linking distant silicon quantum processors. Coherent shuttling of a spin qubit enables efficient switching of the exchange coupling with an on/off ratio exceeding 1000, while preserving the spin coherence by 99.6% for the single shuttling between neighboring dots. With this shuttling-mode exchange control, we demonstrate a two-qubit controlled-phase gate with a fidelity of 93%, assessed via randomized benchmarking. Combination of our technique and a phase coherent shuttling of a qubit across a large quantum dot array will provide feasible path toward a quantum link between distant silicon quantum processors, a key requirement for large-scale quantum computation.

3.
Nature ; 608(7924): 682-686, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002485

RESUMO

Future large-scale quantum computers will rely on quantum error correction (QEC) to protect the fragile quantum information during computation1,2. Among the possible candidate platforms for realizing quantum computing devices, the compatibility with mature nanofabrication technologies of silicon-based spin qubits offers promise to overcome the challenges in scaling up device sizes from the prototypes of today to large-scale computers3-5. Recent advances in silicon-based qubits have enabled the implementations of high-quality one-qubit and two-qubit systems6-8. However, the demonstration of QEC, which requires three or more coupled qubits1, and involves a three-qubit gate9-11 or measurement-based feedback, remains an open challenge. Here we demonstrate a three-qubit phase-correcting code in silicon, in which an encoded three-qubit state is protected against any phase-flip error on one of the three qubits. The correction to this encoded state is performed by a three-qubit conditional rotation, which we implement by an efficient single-step resonantly driven iToffoli gate. As expected, the error correction mitigates the errors owing to one-qubit phase-flip, as well as the intrinsic dephasing mainly owing to quasi-static phase noise. These results show successful implementation of QEC and the potential of a silicon-based platform for large-scale quantum computing.

4.
Nature ; 601(7893): 338-342, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046603

RESUMO

Fault-tolerant quantum computers that can solve hard problems rely on quantum error correction1. One of the most promising error correction codes is the surface code2, which requires universal gate fidelities exceeding an error correction threshold of 99 per cent3. Among the many qubit platforms, only superconducting circuits4, trapped ions5 and nitrogen-vacancy centres in diamond6 have delivered this requirement. Electron spin qubits in silicon7-15 are particularly promising for a large-scale quantum computer owing to their nanofabrication capability, but the two-qubit gate fidelity has been limited to 98 per cent owing to the slow operation16. Here we demonstrate a two-qubit gate fidelity of 99.5 per cent, along with single-qubit gate fidelities of 99.8 per cent, in silicon spin qubits by fast electrical control using a micromagnet-induced gradient field and a tunable two-qubit coupling. We identify the qubit rotation speed and coupling strength where we robustly achieve high-fidelity gates. We realize Deutsch-Jozsa and Grover search algorithms with high success rates using our universal gate set. Our results demonstrate universal gate fidelity beyond the fault-tolerance threshold and may enable scalable silicon quantum computers.

5.
Sci Rep ; 11(1): 19406, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593827

RESUMO

Electron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for medium- to large-scale quantum computation, however, a practical device design that guarantees qubit addressability is yet to be seen. Here, we propose a practical 3 × 3 quantum dot device design and a larger-scale design as a longer-term target. The design goal is to realize qubit connectivity to the four nearest neighbors while ensuring addressability. We show that a 3 × 3 quantum dot array can execute four-qubit Grover's algorithm more efficiently than the one-dimensional counterpart. To scale up the two-dimensional array beyond 3 × 3, we propose a novel structure with ferromagnetic gate electrodes. Our results showcase the possibility of medium-sized quantum processors in Si with fast quantum logic gates and long coherence times.

6.
Nat Nanotechnol ; 16(9): 965-969, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099899

RESUMO

Quantum entanglement is a fundamental property of coherent quantum states and an essential resource for quantum computing1. In large-scale quantum systems, the error accumulation requires concepts for quantum error correction. A first step toward error correction is the creation of genuinely multipartite entanglement, which has served as a performance benchmark for quantum computing platforms such as superconducting circuits2,3, trapped ions4 and nitrogen-vacancy centres in diamond5. Among the candidates for large-scale quantum computing devices, silicon-based spin qubits offer an outstanding nanofabrication capability for scaling-up. Recent studies demonstrated improved coherence times6-8, high-fidelity all-electrical control9-13, high-temperature operation14,15 and quantum entanglement of two spin qubits9,11,12. Here we generated a three-qubit Greenberger-Horne-Zeilinger state using a low-disorder, fully controllable array of three spin qubits in silicon. We performed quantum state tomography16 and obtained a state fidelity of 88.0%. The measurements witness a genuine Greenberger-Horne-Zeilinger class quantum entanglement that cannot be separated into any biseparable state. Our results showcase the potential of silicon-based spin qubit platforms for multiqubit quantum algorithms.

7.
Nano Lett ; 20(2): 947-952, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31944116

RESUMO

Spin qubits in silicon quantum dots offer a promising platform for a quantum computer as they have a long coherence time and scalability. The charge sensing technique plays an essential role in reading out the spin qubit as well as tuning the device parameters, and therefore, its performance in terms of measurement bandwidth and sensitivity is an important factor in spin qubit experiments. Here we demonstrate fast and sensitive charge sensing by radio frequency reflectometry of an undoped, accumulation-mode Si/SiGe double quantum dot. We show that the large parasitic capacitance in typical accumulation-mode gate geometries impedes reflectometry measurements. We present a gate geometry that significantly reduces the parasitic capacitance and enables fast single-shot readout. The technique allows us to distinguish between the singly- and doubly occupied two-electron states under the Pauli spin blockade condition in an integration time of 0.8 µs, the shortest value ever reported in silicon, by the signal-to-noise ratio of 6. These results provide a guideline for designing silicon spin qubit devices suitable for the fast and high-fidelity readout.

8.
Nat Nanotechnol ; 14(6): 555-560, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988474

RESUMO

Measurements of quantum systems inevitably involve disturbance in various forms. Within the limits imposed by quantum mechanics, there exists an ideal projective measurement that does not introduce a back action on the measured observable, known as a quantum non-demolition (QND) measurement1,2. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot. We entangle the single spin with a two-electron, singlet-triplet ancilla qubit via the exchange interaction3,4 and then read out the ancilla in a single shot. This procedure realizes a disturbance-free projective measurement of the single spin at a rate two orders of magnitude faster than its relaxation. The QND nature of the measurement protocol5,6 enables enhancement of the overall measurement fidelity by repeating the protocol. We demonstrate a monotonic increase of the fidelity over 100 repetitions against arbitrary input states. Our analysis based on statistical inference is tolerant to the presence of the relaxation and dephasing. We further exemplify the QND character of the measurement by observing spontaneous flips (quantum jumps)7 of a single electron spin. Combined with the high-fidelity control of spin qubits8-13, these results will allow for various measurement-based quantum state manipulations including quantum error correction protocols14.

9.
Nat Commun ; 9(1): 2133, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849025

RESUMO

Quantum coherence of superposed states, especially of entangled states, is indispensable for many quantum technologies. However, it is vulnerable to environmental noises, posing a fundamental challenge in solid-state systems including spin qubits. Here we show a scheme of entanglement engineering where pure dephasing assists the generation of quantum entanglement at distant sites in a chain of electron spins confined in semiconductor quantum dots. One party of an entangled spin pair, prepared at a single site, is transferred to the next site and then adiabatically swapped with a third spin using a transition across a multi-level avoided crossing. This process is accelerated by the noise-induced dephasing through a variant of the quantum Zeno effect, without sacrificing the coherence of the entangled state. Our finding brings insight into the spin dynamics in open quantum systems coupled to noisy environments, opening an avenue to quantum state manipulation utilizing decoherence effects.

10.
Sci Rep ; 7(1): 12201, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939803

RESUMO

Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

11.
Phys Rev Lett ; 119(1): 017701, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731737

RESUMO

We demonstrate a new method for projective single-shot measurement of two electron spin states (singlet versus triplet) in an array of gate-defined lateral quantum dots in GaAs. The measurement has very high fidelity and is robust with respect to electric and magnetic fluctuations in the environment. It exploits a long-lived metastable charge state, which increases both the contrast and the duration of the charge signal distinguishing the two measurement outcomes. This method allows us to evaluate the charge measurement error and the spin-to-charge conversion error separately. We specify conditions under which this method can be used, and project its general applicability to scalable quantum dot arrays in GaAs or silicon.

12.
Sci Rep ; 6: 39113, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974792

RESUMO

A semiconductor quintuple quantum dot with two charge sensors and an additional contact to the center dot from an electron reservoir is fabricated to demonstrate the concept of scalable architecture. This design enables formation of the five dots as confirmed by measurements of the charge states of the three nearest dots to the respective charge sensor. The gate performance of the measured stability diagram is well reproduced by a capacitance model. These results provide an important step towards realizing controllable large scale multiple quantum dot systems.

13.
Sci Rep ; 6: 31820, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550534

RESUMO

Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...