Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 1(5): 1019-1026, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27917410

RESUMO

Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.

2.
Langmuir ; 32(39): 10104-10112, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27610481

RESUMO

The nanostructure of a microemulsion can be strongly affected by the liquid-to-solid transition during polymerization. Here, we examined the evolution of nanostructures of different ternary mixtures, including two microemulsions and a single lamellar phase that upon polymerization are quantitatively studied by SAXS/WAXS and DSC experiments systematically performed before and after the polymerization of both aqueous and organic phases. Samples are mixtures of the poly(2-acrylamido-2-methylpropanesulfonic acid) network as the aqueous phase and poly(hexyl methacrylate) as the organic phase stabilized by Brij35 surfactant. Upon polymerization, the surfactant is excluded from the water/oil interface and crystallizes, strongly changing the nanostructure of samples where it is the main component. In samples where the aqueous phase is the main component, only a few changes in structure are observed upon polymerization. This study demonstrates quantitatively the possibility to preserve nanostructures during polymerization, thus inducing a templating effect.

3.
Phys Chem Chem Phys ; 18(23): 15911-8, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27241163

RESUMO

We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound.

4.
Soft Matter ; 10(32): 5928-35, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985767

RESUMO

Solid-state proton conductors operating under mild temperature conditions (T < 150 °C) would promote the use of electrochemical devices as fuel cells. Alternatives to the water-sensitive membranes made of perfluorinated sulfonated polymers require the use of protogenic moieties bearing phosphates/phosphonates or imidazole groups. Here, we formulate microemulsions using water, a cationic surfactant (cetyltrimethyl ammonium bromide, CTAB) and a fatty acid (myristic acid, MA). The fatty acid acts both as an oil phase above its melting point (52 °C) and as a protogenic moiety. We demonstrate that the mixed MA-CTA film presents significant proton conductivity. Furthermore, bicontinuous microemulsions are found in the water-CTAB-MA phase diagram above 52 °C, where molten MA plays both the role of the oil phase and the co-surfactant. This indicates that the hydrogen-bond rich MA-CTA film can be formulated in the molten phase. The microemulsion converts into a lamellar phase upon solidification at room temperature. Our results demonstrate the potential of such self-assembled materials for the design of bulk proton conductors, but also highlight the necessity to control the evolution of the nanostructure upon solidification of the oil phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA