Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546203

RESUMO

Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.


Assuntos
Sinais (Psicologia) , Córtex Entorrinal , Camundongos , Animais , Potenciais de Ação , Percepção Espacial , Modelos Neurológicos
2.
Curr Biol ; 33(21): R1160-R1162, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935132

RESUMO

Memory consolidation involves interactions between the hippocampus and other cortical areas. A new study identifies neurons in the medial entorhinal cortex that over learning increase their coordination with hippocampal replay events, suggesting a route for consolidation of spatial memories.


Assuntos
Córtex Entorrinal , Consolidação da Memória , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Memória Espacial , Neurônios/fisiologia
3.
Neuron ; 111(4): 508-525.e7, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495869

RESUMO

In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.


Assuntos
Síndrome do Cromossomo X Frágil , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/uso terapêutico , Proteostase , Bortezomib/metabolismo , Bortezomib/uso terapêutico , Proteína do X Frágil da Deficiência Intelectual/genética , Modelos Animais de Doenças , Camundongos Knockout
4.
Elife ; 112022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562467

RESUMO

Standard models for spatial and episodic memory suggest that the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC) send parallel independent inputs to the hippocampus, each carrying different types of information. Here, we evaluate the possibility that information is integrated between divisions of the entorhinal cortex prior to reaching the hippocampus. We demonstrate that, in mice, fan cells in layer 2 (L2) of LEC that receive neocortical inputs, and that project to the hippocampal dentate gyrus, also send axon collaterals to layer 1 (L1) of the MEC. Activation of inputs from fan cells evokes monosynaptic glutamatergic excitation of stellate and pyramidal cells in L2 of the MEC, typically followed by inhibition that contains fast and slow components mediated by GABAA and GABAB receptors, respectively. Inputs from fan cells also directly activate interneurons in L1 and L2 of MEC, with synaptic connections from L1 interneurons accounting for slow feedforward inhibition of L2 principal cell populations. The relative strength of excitation and inhibition following fan cell activation differs substantially between neurons and is largely independent of anatomical location. Our results demonstrate that the LEC, in addition to directly influencing the hippocampus, can activate or inhibit major hippocampal inputs arising from the MEC. Thus, local circuits in the superficial MEC may combine spatial information with sensory and higher order signals from the LEC, providing a substrate for integration of 'what' and 'where' components of episodic memories.


Assuntos
Córtex Entorrinal , Hipocampo , Camundongos , Animais , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Giro Para-Hipocampal , Ácido gama-Aminobutírico
5.
Curr Biol ; 32(20): 4451-4464.e7, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36099915

RESUMO

Neurons in the retrohippocampal cortices play crucial roles in spatial memory. Many retrohippocampal neurons have firing fields that are selectively active at specific locations, with memory for rewarded locations associated with reorganization of these firing fields. Whether this is the sole strategy for representing spatial memories is unclear. Here, we demonstrate that during a spatial memory task retrohippocampal neurons encode location through ramping activity that extends across segments of a linear track approaching and following a reward, with the rewarded location represented by offsets or switches in the slope of the ramping activity. Ramping representations could be maintained independently of trial outcome and cues marking the reward location, indicating that they result from recall of the track structure. When recorded in an open arena, neurons that generated ramping activity during the spatial memory task were more numerous than grid or border cells, with a majority showing spatial firing that did not meet criteria for classification as grid or border representations. Encoding of rewarded locations through offsets and switches in the slope of ramping activity also emerged in recurrent neural network models trained to solve a similar spatial memory task. Impaired performance of model networks following disruption of outputs from ramping neurons is consistent with this coding strategy supporting navigation to recalled locations of behavioral significance. Our results suggest that encoding of learned spaces by retrohippocampal networks employs both discrete firing fields and continuous ramping representations. We hypothesize that retrohippocampal ramping activity mediates readout of learned models for goal-directed navigation.


Assuntos
Hipocampo , Neurônios , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Cerebral , Memória Espacial , Recompensa
6.
Adv Sci (Weinh) ; 9(31): e2203018, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068166

RESUMO

Establishing the biological basis of cognition and its disorders will require high precision spatiotemporal measurements of neural activity. Recently developed genetically encoded voltage indicators (GEVIs) report both spiking and subthreshold activity of identified neurons. However, maximally capitalizing on the potential of GEVIs will require imaging at millisecond time scales, which remains challenging with standard camera systems. Here, application of single photon avalanche diode (SPAD) sensors is reported to image neural activity at kilohertz frame rates. SPADs are electronic devices that when activated by a single photon cause an avalanche of electrons and a large electric current. An array of SPAD sensors is used to image individual neurons expressing the GEVI Voltron-JF525-HTL. It is shown that subthreshold and spiking activity can be resolved with shot noise limited signals at frame rates of up to 10 kHz. SPAD imaging is able to reveal millisecond scale synchronization of neural activity in an ex vivo seizure model. SPAD sensors may have widespread applications for investigation of millisecond timescale neural dynamics.


Assuntos
Neurônios , Fótons , Neurônios/fisiologia , Diagnóstico por Imagem , Eletrônica
7.
Trends Neurosci ; 44(11): 876-887, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34593254

RESUMO

The deep layers of the entorhinal cortex are important for spatial cognition, as well as memory storage, consolidation and retrieval. A long-standing hypothesis is that deep-layer neurons relay spatial and memory-related signals between the hippocampus and telencephalon. We review the implications of recent circuit-level analyses that suggest more complex roles. The organization of deep entorhinal layers is consistent with multi-stage processing by specialized cell populations; in this framework, hippocampal, neocortical, and subcortical inputs are integrated to generate representations for use by targets in the telencephalon and for feedback to the superficial entorhinal cortex and hippocampus. Addressing individual sublayers of the deep entorhinal cortex in future experiments and models will be important for establishing systems-level mechanisms for spatial cognition and episodic memory.


Assuntos
Córtex Entorrinal , Memória Episódica , Cognição , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Humanos , Neurônios/fisiologia
8.
Brain ; 144(5): 1576-1589, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33769452

RESUMO

Seizures can emerge from multiple or large foci in temporal lobe epilepsy, complicating focally targeted strategies such as surgical resection or the modulation of the activity of specific hippocampal neuronal populations through genetic or optogenetic techniques. Here, we evaluate a strategy in which optogenetic activation of medial septal GABAergic neurons, which provide extensive projections throughout the hippocampus, is used to control seizures. We utilized the chronic intrahippocampal kainate mouse model of temporal lobe epilepsy, which results in spontaneous seizures and as is often the case in human patients, presents with hippocampal sclerosis. Medial septal GABAergic neuron populations were immunohistochemically labelled and were not reduced in epileptic conditions. Genetic labelling with mRuby of medial septal GABAergic neuron synaptic puncta and imaging across the rostral to caudal extent of the hippocampus, also indicated an unchanged number of putative synapses in epilepsy. Furthermore, optogenetic stimulation of medial septal GABAergic neurons consistently modulated oscillations across multiple hippocampal locations in control and epileptic conditions. Finally, wireless optogenetic stimulation of medial septal GABAergic neurons, upon electrographic detection of spontaneous hippocampal seizures, resulted in reduced seizure durations. We propose medial septal GABAergic neurons as a novel target for optogenetic control of seizures in temporal lobe epilepsy.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/fisiopatologia , Optogenética , Convulsões/fisiopatologia , Núcleos Septais/fisiopatologia , Animais , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Masculino , Camundongos
9.
Nat Commun ; 11(1): 4228, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839445

RESUMO

Grid and head direction codes represent cognitive spaces for navigation and memory. Pure grid cells generate grid codes that have been assumed to be independent of head direction, whereas conjunctive cells generate grid representations that are tuned to a single head direction. Here, we demonstrate that pure grid cells also encode head direction, but through distinct mechanisms. We show that individual firing fields of pure grid cells are tuned to multiple head directions, with the preferred sets of directions differing between fields. This local directional modulation is not predicted by previous continuous attractor or oscillatory interference models of grid firing but is accounted for by models in which pure grid cells integrate inputs from co-aligned conjunctive cells with firing rates that differ between their fields. We suggest that local directional signals from grid cells may contribute to downstream computations by decorrelating different points of view from the same location.


Assuntos
Potenciais de Ação/fisiologia , Córtex Entorrinal/fisiologia , Células de Grade/fisiologia , Cabeça/fisiologia , Neurônios/fisiologia , Animais , Simulação por Computador , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Córtex Entorrinal/citologia , Feminino , Masculino , Camundongos , Modelos Neurológicos , Atividade Motora/fisiologia , Ratos
10.
Elife ; 92020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32039761

RESUMO

Distinctions between cell types underpin organizational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and the synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit-level set points that vary within and between animals.


The brain consists of many types of cells that are specialised to perform different tasks. This is similar to how different groups of people will have different responsibilities in a large company. But within each group with the same role, individual employees will also do their jobs in different ways. Does the same apply to the brain? In other words, do individual neurons of the same type ­ with the same role ­ process information differently? To find out, Pastoll et al. studied stellate cells in the mouse brain: these neurons take their name from their distinctive star-shaped arrays of projections, and they work together in groups known as modules to help animals navigate their environment. To determine whether stellate cells differ between mice, and how they might differ within a single animal, Pastoll et al. measured the activity of more than 800 stellate cells in more than two dozen individuals. The results revealed that stellate cells process the same information differently between mice, which may contribute to variations in behaviour across the species. But even within an individual, stellate cells also showed differences in information processing. In fact, the properties of the stellate cells within each mouse varied along a continuum. This discovery rules out several previous theories on how stellate cells form the modules that support navigation. The work by Pastoll et al. helps to understand how the brain supports thinking and memory. In the long term, these findings could also have implications for treating brain disorders, as they suggest that variations between people in the properties of their neurons could lead to variations in drug response. Researchers may need to take inter-individual differences into account when planning experiments, and ultimately when designing drugs.


Assuntos
Córtex Entorrinal , Neurônios/citologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Eletrofisiologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Feminino , Células de Grade/citologia , Masculino , Camundongos , Técnicas de Patch-Clamp , Fenótipo
11.
Curr Biol ; 30(1): 169-175.e5, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31839450

RESUMO

Episodic memory requires different types of information to be bound together to generate representations of experiences. The lateral entorhinal cortex (LEC) and hippocampus are required for episodic-like memory in rodents [1, 2]. The LEC is critical for integrating spatial and contextual information about objects [2-6]. Further, LEC neurons encode objects in the environment and the locations where objects were previously experienced and generate representations of time during the encoding and retrieval of episodes [7-12]. However, it remains unclear how specific populations of cells within the LEC contribute to the integration of episodic memory components. Layer 2 (L2) of LEC manifests early pathology in Alzheimer's disease (AD) and related animal models [13-16]. Projections to the hippocampus from L2 of LEC arise from fan cells in a superficial sub-layer (L2a) that are immunoreactive for reelin and project to the dentate gyrus [17, 18]. Here, we establish an approach for selectively targeting fan cells using Sim1:Cre mice. Whereas complete lesions of the LEC were previously found to abolish associative recognition memory [2, 3], we report that, after selective suppression of synaptic output from fan cells, mice can discriminate novel object-context configurations but are impaired in recognition of novel object-place-context associations. Our results suggest that memory functions are segregated between distinct LEC networks.


Assuntos
Córtex Entorrinal/fisiologia , Memória Episódica , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Reconhecimento Psicológico , Proteína Reelina , Serina Endopeptidases/metabolismo
12.
Cell Rep ; 22(7): 1722-1733, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444426

RESUMO

Cerebellar climbing-fiber-mediated complex spikes originate from neurons in the inferior olive (IO), are critical for motor coordination, and are central to theories of cerebellar learning. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels expressed by IO neurons have been considered as pacemaker currents important for oscillatory and resonant dynamics. Here, we demonstrate that in vitro, network actions of HCN1 channels enable bidirectional glutamatergic synaptic responses, while local actions of HCN1 channels determine the timing and waveform of synaptically driven action potentials. These roles are distinct from, and may complement, proposed pacemaker functions of HCN channels. We find that in behaving animals HCN1 channels reduce variability in the timing of cerebellar complex spikes, which serve as a readout of IO spiking. Our results suggest that spatially distributed actions of HCN1 channels enable the IO to implement network-wide rules for synaptic integration that modulate the timing of cerebellar climbing fiber signals.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/citologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Sinapses/metabolismo , Animais , Canais de Cálcio/metabolismo , Junções Comunicantes/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Movimento , Neurônios/metabolismo , Fatores de Tempo , Vigília
13.
Cell Rep ; 22(5): 1313-1324, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29386117

RESUMO

Spatial learning requires estimates of location that may be obtained by path integration or from positional cues. Grid and other spatial firing patterns of neurons in the superficial medial entorhinal cortex (MEC) suggest roles in behavioral estimation of location. However, distinguishing the contributions of path integration and cue-based signals to spatial behaviors is challenging, and the roles of identified MEC neurons are unclear. We use virtual reality to dissociate linear path integration from other strategies for behavioral estimation of location. We find that mice learn to path integrate using motor-related self-motion signals, with accuracy that decreases steeply as a function of distance. We show that inactivation of stellate cells in superficial MEC impairs spatial learning in virtual reality and in a real world object location recognition task. Our results quantify contributions of path integration to behavior and corroborate key predictions of models in which stellate cells contribute to location estimation.


Assuntos
Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Córtex Entorrinal/citologia , Camundongos
14.
Nat Neurosci ; 20(11): 1483-1492, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29073648

RESUMO

Synaptic integrative mechanisms have profound effects on electrical signaling in the brain that, although largely hidden from recording methods that observe the spiking activity of neurons, may be critical for the encoding, storage and retrieval of information. Here we review roles for synaptic integrative mechanisms in the selection, generation and plasticity of place and grid fields, and in related temporal codes for the representation of space. We outline outstanding questions and challenges in the testing of hypothesized models for spatial computation and memory.


Assuntos
Encéfalo/citologia , Cognição/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Humanos , Memória/fisiologia , Plasticidade Neuronal/fisiologia
15.
J Physiol ; 595(4): 1239-1251, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27767209

RESUMO

KEY POINTS: We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive. Neurones in the principal olivary nucleus receive monosynaptic extra-somatic glutamatergic input from the neocortex. Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component. Small conductance calcium-activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms. Active integration of synaptic input within the inferior olive may play a central role in control of olivo-cerebellar climbing fibre signals. ABSTRACT: The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long-range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium-activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium-activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours.


Assuntos
Núcleo Olivar/metabolismo , Receptores de AMPA/metabolismo , Potenciais Sinápticos , Animais , Apamina/farmacologia , Ácido Glutâmico/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/metabolismo , Córtex Motor/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Olivar/citologia , Núcleo Olivar/fisiologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
17.
Elife ; 52016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929374

RESUMO

Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal's lifespan.


Assuntos
Potenciais de Ação , Hipocampo/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Células de Lugar/fisiologia , Lobo Temporal/fisiologia , Ritmo Teta
19.
J Physiol ; 594(22): 6547-6557, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27870120

RESUMO

Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid-like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid-like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta-nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid-like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing.


Assuntos
Potenciais de Ação/fisiologia , Células de Grade/fisiologia , Rede Nervosa/fisiologia , Animais , Córtex Entorrinal/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...