Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(1): 963-973, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34957830

RESUMO

Localized surface phonon polaritons (LSPhPs) can be implemented to engineer light-matter interactions through nanoscale patterning for a range of midinfrared application spaces. However, the polar material systems studied to date have mainly focused on simple designs featuring a single element in the periodic unit cell. Increasing the complexity of the unit cell can serve to modify the resonant near-fields and intra- and inter-unit-cell coupling as well as to dictate spectral tuning in the far-field. In this work, we exploit more complicated unit-cell structures to realize LSPhP modes with additional degrees of design freedom, which are largely unexplored. Collectively excited LSPhP modes with distinctly symmetric and antisymmetric near-fields are supported in these subarray designs, which are based on nanopillars that are scaled by the number of subarray elements to ensure a constant unit-cell size. Moreover, we observe an anomalous mode-matching of the collective symmetric mode in our fabricated subarrays that is robust to changing numbers of pillars within the subarrays as well as to defects intentionally introduced in the form of missing pillars. This work therefore illustrates the hierarchical design of tailored LSPhP resonances and modal near-field profiles simultaneously for a variety of IR applications such as surface-enhanced spectroscopies and biochemical sensing.

2.
Nat Mater ; 20(12): 1663-1669, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34675374

RESUMO

Wavelength-selective thermal emitters (WS-EMs) are of interest due to the lack of cost-effective, narrow-band sources in the mid- to long-wave infrared. WS-EMs can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors on metals. However, the design of multiple resonances is challenging as numerous structural parameters must be optimized simultaneously. Here we use stochastic gradient descent to optimize TPP emitters (TPP-EMs) composed of an aperiodic distributed Bragg reflector deposited on doped cadmium oxide (CdO) film, where layer thicknesses and carrier density are inversely designed. The combination of the aperiodic distributed Bragg reflector with the designable plasma frequency of CdO enables multiple TPP-EM modes to be simultaneously designed with arbitrary spectral control not accessible with metal-based TPPs. Using this approach, we experimentally demonstrated and numerically proposed TPP-EMs exhibiting single or multiple emission bands with designable frequencies, line-widths and amplitudes. This thereby enables lithography-free, wafer-scale WS-EMs that are complementary metal-oxide-semiconductor compatible for applications such as free-space communications and gas sensing.

3.
Nano Lett ; 21(4): 1831-1838, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587855

RESUMO

Strong coupling between optical modes can be implemented into nanophotonic design to modify the energy-momentum dispersion relation. This approach offers potential avenues for tuning the thermal emission frequency, line width, polarization, and spatial coherence. Here, we employ three-mode strong coupling between propagating and localized surface phonon polaritons, with zone-folded longitudinal optic phonons within periodic arrays of 4H-SiC nanopillars. Energy exchange, mode evolution, and coupling strength between the three polariton branches are explored experimentally and theoretically. The influence of strong coupling upon the angle-dependent thermal emission was directly measured, providing excellent agreement with theory. We demonstrate a 5-fold improvement in the spatial coherence and 3-fold enhancement of the quality factor of the polaritonic modes, with these hybrid modes also exhibiting a mixed character that could enable opportunities to realize electrically driven emission. Our results show that polariton-phonon strong coupling enables thermal emitters, which meet the requirements for a host of IR applications in a simple, lightweight, narrow-band, and yet bright emitter.

4.
Nano Lett ; 19(2): 948-957, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30582700

RESUMO

Polaritonic materials that support epsilon-near-zero (ENZ) modes offer the opportunity to design light-matter interactions at the nanoscale through extreme subwavelength light confinement, producing phenomena like resonant perfect absorption. However, the utility of ENZ modes in nanophotonic applications has been limited by a flat spectral dispersion, which leads to small group velocities and extremely short propagation lengths. Here, we overcome this constraint by hybridizing ENZ and surface plasmon polariton (SPP) modes in doped cadmium oxide epitaxial bilayers. This results in strongly coupled hybrid modes that are characterized by an anticrossing in the polariton dispersion and a large spectral splitting on the order of 1/3 of the mode frequency. These hybrid modes simultaneously achieve modal propagation and ENZ mode-like interior field confinement, adding propagation character to ENZ mode properties. We subsequently tune the resonant frequencies, dispersion, and coupling of these polaritonic-hybrid-epsilon-near-zero (PH-ENZ) modes by tailoring the modal oscillator strength and the ENZ-SPP spectral overlap. PH-ENZ modes ultimately leverage the most desirable characteristics of both ENZ and SPP modes, allowing us to overcome the canonical plasmonic trade-off between confinement and propagation length.

5.
Nano Lett ; 18(12): 7529-7537, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394751

RESUMO

Metasurfaces provide a versatile platform for manipulating the wavefront of light using planar nanostructured surfaces. Transmissive metasurfaces, with full 2π phase control, are a particularly attractive platform for replacing conventional optical elements due to their small footprint and broad functionality. However, the operational bandwidth of metasurfaces has been a critical limitation and is directly connected to either their resonant response or the diffractive dispersion of their lattice. While multiwavelength and continuous band operation have been demonstrated, the elements suffer from either low efficiency, reduced imaging quality, or limited element size. Here, we propose a platform that provides for multiwavelength operation by employing tightly spaced multilayer dielectric metasurfaces. As a proof of concept, we demonstrate a multiwavelength metalens doublet (NA = 0.42) with focusing efficiencies of 38% and 52% at wavelengths of 1180 and 1680 nm, respectively. We further show how this approach can be extended to three-wavelength metalenses as well as a spectral splitter. This approach could find applications in fluorescent microscopy, digital imaging, and color routing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...