Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Virus Genes ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008139

RESUMO

The recent expansion of HPAIV H5N1 infections in terrestrial mammals in the Americas, most recently including the outbreak in dairy cattle, emphasizes the critical need for better epidemiological monitoring of zoonotic diseases. In this work, we detected, isolated, and characterized the HPAIV H5N1 from environmental swab samples collected from a dairy farm in the state of Kansas, USA. Genomic sequencing of these samples uncovered two distinctive substitutions in the PB2 (E249G) and NS1 (R21Q) genes which are rare and absent in recent 2024 isolates of H5N1 circulating in the mammalian and avian species. Additionally, approximately 1.7% of the sequence reads indicated a PB2 (E627K) substitution, commonly associated with virus adaptation to mammalian hosts. Phylogenetic analyses of the PB2 and NS genes demonstrated more genetic identity between this environmental isolate and the 2024 human isolate (A/Texas/37/2024) of H5N1. Conversely, HA and NA gene analyses revealed a closer relationship between our isolate and those found in other dairy cattle with almost 100% identity, sharing a common phylogenetic subtree. These findings underscore the rapid evolutionary progression of HPAIV H5N1 among dairy cattle and reinforces the need for more epidemiological monitoring which can be done using environmental sampling.

2.
MethodsX ; 11: 102476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053622

RESUMO

Canine infectious respiratory disease (CIRD) is a complicated respiratory syndrome in dogs [1], [2], [3]. A panel PCR was developed [4] to detect nine pathogens commonly associated with CIRD: Mycoplasma cynos, Mycoplasma canis, Bordetella bronchiseptica; canine adenovirus type 2, canine herpesvirus 1, canine parainfluenza virus, canine distemper virus, canine influenza virus and canine respiratory coronavirus [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. To evaluate diagnostic performance of the assay, 740 nasal swab and lung tissue samples were collected and tested with the new assay, and compared to an older version of the assay detecting the same pathogens except that it does not differentiate the two Mycoplasma species. Results indicated that the new assay had the same level of specificity, but with higher diagnostic sensitivity and had identified additional samples with potential co-infections. To confirm the new assay is detecting the correct pathogens, samples with discrepant results between the two assays were sequence-confirmed. Spiking a high concertation target to samples carrying lower concentrations of other targets was carried out and the results demonstrated that there was no apparent interference among targets in the same PCR reaction. Another spike-in experiment was used to determine detection sensitivity between nasal swab and lung tissue samples, and similar results were obtained.•A nine-pathogen CIRD PCR panel assay had identified 139 positives from 740 clinical samples with 60 co-infections;•High-concentration target does not have apparent effect on detecting low-concentration targets;•Detection sensitivity were similar between nasal swab and lung tissue samples.

3.
J Microbiol Methods ; 199: 106528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753509

RESUMO

Infectious respiratory disease is one of the most common diseases in dogs worldwide. Several bacterial and viral pathogens can serve as causative agents of canine infectious respiratory disease (CIRD), including Mycoplasma cynos, Mycoplasma canis, Bordetella bronchiseptica, canine adenovirus type 2 (CAdV-2), canine herpesvirus 1 (CHV-1), canine parainfluenza virus (CPIV), canine distemper virus (CDV), canine influenza virus (CIA) and canine respiratory coronavirus (CRCoV). Since these organisms cause similar clinical symptoms, disease diagnosis based on symptoms alone can be difficult. Therefore, a quick and accurate test is necessary to rapidly identify the presence and relative concentrations of causative CIRD agents. In this study, a multiplex real-time PCR panel assay was developed and composed of three subpanels for detection of the aforementioned pathogens. Correlation coefficients (R2) were >0.993 for all singleplex and multiplex real-time PCR assays with the exception of one that was 0.988; PCR amplification efficiencies (E) were between 92.1% and 107.8% for plasmid DNA, and 90.6-103.9% for RNA templates. In comparing singular and multiplex PCR assays, the three multiplex reactions generated similar R2 and E values to those by corresponding singular reactions, suggesting that multiplexing did not interfere with the detection sensitivities. The limit of detection (LOD) of the multiplex real-time PCR for DNA templates was 5, 2, 3, 1, 1, 1, 4, 24 and 10 copies per microliter for M. cynos, M. canis, B. brochiseptica, CAdV-2, CHV-1, CPIV, CDV, CIA and CRCoV, respectively; and 3, 2, 6, 17, 4 and 8 copies per microliter for CAdV-2, CHV-1, CPIV, CDV, CIA and CRCoV, respectively, when RNA templates were used for the four RNA viruses. No cross-detection was observed among the nine pathogens. For the 740 clinical samples tested, the newly designed PCR assay showed higher diagnostic sensitivity compared to an older panel assay; pathogen identities from selected samples positive by the new assay but undetected by the older assay were confirmed by Sanger sequencing. Our data showed that the new assay has higher diagnostic sensitivity while maintaining the assay's specificity, as compared to the older version of the panel assay.


Assuntos
Doenças do Cão , Infecções Respiratórias , Animais , DNA , Doenças do Cão/diagnóstico , Doenças do Cão/microbiologia , Cães , Reação em Cadeia da Polimerase Multiplex , RNA , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Sensibilidade e Especificidade
4.
Vet Microbiol ; 270: 109447, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561657

RESUMO

Enteric disease is the predominant cause of morbidity and mortality in young mammals including pigs. Viral species involved in porcine enteric disease complex (PEDC) include rotaviruses, coronaviruses, picornaviruses, astroviruses and pestiviruses among others. The virome of three groups of swine samples submitted to the Kansas State University Veterinary Diagnostic Laboratory for routine testing were assessed, namely, a Rotavirus A positive (RVA) group, a Rotavirus co-infection (RV) group and a Rotavirus Negative (RV Neg) group. All groups were designated by qRT-PCR test results for Porcine Rotavirus A, B, C and H such that samples positive for RVA only went in the RVA group, samples positive for > 1 rotavirus went in the RV group and samples negative for all were grouped in the RVNeg group. All of the animals had clinical enteric disease resulting in scours and swollen joints/lameness, enlarged heart and/or a cough. All samples were metagenomic sequenced and analyzed for viral species composition that identified 14 viral species and eight bacterial viruses/phages. Sapovirus and Escherichia coli phages were found at a high prevalence in RVA and RV samples but were found at low or no prevalence in the RVNeg samples. Picobirnavirus was identified at a high proportion and prevalence in RVNeg and RV samples but at a low prevalence in the RVA group. Non-rotaviral diversity was highest in RVA samples followed by RV then RV Neg samples. A sequence analysis of the possible host of Picobirnaviruses revealed fungi as the most likely host. Various sequences were extracted from the sample reads and a phylogenetic update was provided showing a high prevalence of G9 and P[23] RVA genotypes. These data are important for pathogen surveillance and control measures.


Assuntos
Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Diarreia/epidemiologia , Diarreia/veterinária , Fezes , Genótipo , Humanos , Mamíferos , Filogenia , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Suínos , Doenças dos Suínos/epidemiologia , Viroma
5.
Transbound Emerg Dis ; 69(5): e1618-e1631, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35218683

RESUMO

The SARS-CoV-2 virus is the causative agent of COVID-19 and has undergone continuous mutations throughout the pandemic. The more transmissible Omicron variant has quickly spread and is replacing the Delta variant as the most prevalent strain globally, including in the United States. A new molecular assay that can detect and differentiate both the Delta and Omicron variants was developed. A collection of 660,035 SARS-CoV-2 full- or near-full genomes, including 169,454 Delta variant and 24,202 Omicron variant strains, were used for primer and probe designs. In silico data analysis predicted an assay coverage of >99% of all strains, including >99% of the Delta and >99% of Omicron strains. The Omicron variant differential test was designed based on the Δ31-33 aa deletion in the N-gene, which is present in the original B.1.1.529 main genotype, BA.1, as well as in BA.2 and BA.3 subtypes. Therefore, the assay should detect the majority of all Omicron variant strains. Standard curves generated with human clinical samples indicated that the PCR amplification efficiencies were 104%, 90.7% and 90.4% for the Omicron, Delta, and non-Delta/non-Omicron wild-type genotypes, respectively. Correlation coefficients of the standard curves were all >0.99. The detection limit of the assay was 14.3, 32.0, and 21.5 copies per PCR reaction for Omicron, Delta, and wild-type genotypes, respectively. The assay was designed to specifically detect SAR-CoV-2 strains. Selected samples with Omicron, Delta and wild-type genotypes identified by the RT-qPCR assay were also confirmed by sequencing. The assay did not detect any animal coronavirus-positive samples that were tested. Human nasal swab samples that previously tested positive (n = 182) or negative (n = 42) for SARS-CoV-2 by the ThermoFisher TaqPath COVID-19 Combo Kit, produced the same result with the new assay. Among positive samples, 55.5% (101/182), 23.1% (42/182), and 21.4% (39/182) were identified as Omicron, Delta, and non-Omicron/non-Delta wild-type genotypes, respectively.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Humanos , Técnicas de Amplificação de Ácido Nucleico/veterinária , RNA Viral/genética , SARS-CoV-2/genética
6.
Transbound Emerg Dis ; 69(5): e1460-e1468, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35166453

RESUMO

A novel respiratory-associated Mycoplasma species (M. sp. nov.) of unknown clinical significance was recently identified that causes false positive results with multiple published PCR methods reported to specifically detect Mycoplasma ovipneumonaie, a well-known respiratory pathogen in small ruminants. This necessitates our objective to develop a real-time PCR (qPCR) assay for improved specificity and sensitivity, and more rapid detection and differentiation of M. ovipneumoniae and the M. sp. nov. in domestic sheep (DS) and domestic goat (DG) samples, as compared to a conventional PCR and sequencing (cPCR-seq) assay. Primers and probes were designed based on available M. ovipneumoniae 16S rRNA gene sequences in the GenBank database, and partial 16S rRNA gene sequences provided by the United States Department of Agriculture, Agricultural Research Service (USDA-ARS) for M. ovipneumoniae and M. sp. nov. USDA-ARS provided DS (n = 153) and DG (n = 194) nasal swab nucleic acid that previously tested positive for either M. ovipneumoniae (n = 117) or M. sp. nov. (n = 138), or negative for both targets (n = 92) by cPCR-seq. A host 18S rRNA gene was included as an internal control to monitor for the failure of nucleic acid extraction and possible PCR inhibition. For samples positive by cPCR-seq, qPCR agreement was 88.0% (103/117; κ = 0.81) and 89.9% (124/138; κ = 0.84) for M. ovipneumoniae and M. sp. nov., respectively; 12 of 255 (4.7%) cPCR-seq positive samples were qPCR positive for both targets. Of samples negative by cPCR for both mycoplasmas, qPCR detected M. ovipneumoniae and M. sp. nov. in 6.5% (6/92) and 4.3% (4/92), respectively. Samples with discordant results between the cPCR and sequencing assay and the new qPCR were analyzed by target sequencing; successfully sequenced samples had identity matches that confirmed the qPCR result. The increased target specificity of this qPCR is predicted to increase testing accuracy as compared to other published assays.


Assuntos
Doenças das Cabras , Mycoplasma ovipneumoniae , Mycoplasma , Doenças dos Ovinos , Animais , Doenças das Cabras/diagnóstico , Cabras , Mycoplasma/genética , Mycoplasma ovipneumoniae/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Ovinos , Doenças dos Ovinos/diagnóstico , Carneiro Doméstico
7.
J Food Prot ; 85(4): 701-705, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35076692

RESUMO

ABSTRACT: Following removal of hides and viscera during beef processing, carcasses are inspected for tissue adhesions that can affect meat quality or harbor bacteria. Carcasses with pleural or abdominal adhesions may be diverted from the production line for manual excision and then returned to the line. No published data indicate whether adhesion excision is associated with bacterial contamination. Therefore, our objective was to determine the presence and concentration of generic Escherichia coli and non-E. coli coliforms from the internal and external surfaces of carcasses that were, or were not, diverted for adhesion excision. During 9 processing days over a 4-month period in a large commercial beef processing facility, 1,738 carcass sponge samples from 2,730 cm2 areas on both the internal and the external surfaces of carcasses with and without tissue adhesions were collected. Coliforms and E. coli were cultured and enumerated using Petrifilm procedures, and data were analyzed with mixed models. Coliforms were present at higher concentrations than E. coli, and prevalence and mean log concentrations of both coliforms and E. coli were significantly higher for samples from the external than from the internal surfaces of carcasses. However, differences in prevalence and concentration of coliforms between external and internal surfaces varied significantly based on whether carcasses had adhesions excised. The difference was greatest for coliforms present on the external (2.06 log CFU/100 cm2) versus the internal (0.93 log CFU/100 cm2) carcass surfaces without adhesions, whereas the difference in concentrations from the external (1.80 log CFU/100 cm2) and the internal (1.31 log CFU/100 cm2) surfaces of carcasses with adhesions was not as large. These results indicate that surveillance of carcass bacteria may be affected by whether the external versus the internal surfaces are sampled and whether carcasses are diverted for excision of adhesions.


Assuntos
Escherichia coli , Carne , Matadouros , Animais , Bactérias , Bovinos , Contagem de Colônia Microbiana , Contaminação de Alimentos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Carne/microbiologia , Aderências Teciduais
8.
Transbound Emerg Dis ; 69(5): 2879-2889, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34964565

RESUMO

The Delta variant of SARS-CoV-2 has now become the predominant strain in the global COVID-19 pandemic. Strain coverage of some detection assays developed during the early pandemic stages has declined due to periodic mutations in the viral genome. We have developed a real-time RT-PCR (RT-qPCR) for SARS-CoV-2 detection that provides nearly 100% strain coverage, and differentiation of highly transmissible Delta variant strains. All full or nearly full (≥28 kb) SARS-CoV-2 genomes (n = 403,812), including 6422 Delta and 280 Omicron variant strains, were collected from public databases at the time of analysis and used for assay design. The two amino acid deletions in the spike gene (S-gene, Δ156-157) that is characteristic of the Delta variant were targeted during the assay design. Although strain coverage for the Delta variant was very high (99.7%), detection coverage for non-Delta wild-type strains was 93.9%, mainly due to the confined region of design. To increase strain coverage of the assay, the design for CDC N1 target was added to the assay. In silico analysis of 403,812 genomes indicated a 95.4% strain coverage for the CDC N1 target, however, in combination with our new non-Delta S-gene target, total coverage for non-Delta wild-type strains increased to 99.8%. A human 18S rRNA gene was also analyzed and used as an internal control. The final four-plex RT-qPCR assay generated PCR amplification efficiencies between 95.4% and 102.0% with correlation coefficients (R2 ) of >0.99 for cloned positive controls; Delta and non-Delta human clinical samples generated PCR efficiencies of 93.4%-97.0% and R2  > 0.99. The assay also detects 98.6% of 280 Omicron sequences. Assay primers and probes have no match to other closely related human coronaviruses, and did not produce a signal from samples positive to selected animal coronaviruses. Genotypes of selected clinical samples identified by the RT-qPCR were confirmed by Sanger sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética
9.
Emerg Microbes Infect ; 11(1): 14-17, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34783635

RESUMO

Knowledge of SARS-CoV-2 variants is essential for formulating effective control policies. Currently, variants are only identified in relatively small percentages of cases as the required genome sequencing is expensive, time-consuming, and not always available. In countries with facilities to sequence the SARS-CoV-2, the Delta variant currently predominates. Elsewhere, the prevalence of the Delta variant is unclear. To avoid the need for sequencing, we investigated a RT-FRET-PCR that could detect all SARS-CoV-2 strains and simultaneously identify the Delta variant. The established Delta RT-FRET-PCR was performed on reference SARS-CoV-2 strains, and human nasal swab samples positive for the Delta and non-Delta strains. The Delta RT-FRET-PCR established in this study detected as few as ten copies of the DNA target and 100 copies of RNA target per reaction. Melting points of products obtained with SARS-CoV-2 Delta variants (around 56.1°C) were consistently higher than products obtained with non-Delta strains (around 52.5°C). The Delta RT-FRET-PCR can be used to diagnose COVID-19 patients and simultaneously identify if they are infected with the Delta variant. The Delta RT-FRET-PCR can be performed with all major thermocycler brands meaning data on Delta variant can now be readily generated in diagnostic laboratories worldwide.


Assuntos
COVID-19/virologia , Transferência Ressonante de Energia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Alelos , Substituição de Aminoácidos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Mutação , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/genética
10.
Viruses ; 13(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696534

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) descriptions of infection and transmission have been increasing in companion animals in the past year. Although canine susceptibility is generally considered low, their role in the COVID-19 disease cycle remains unknown. In this study, we detected and sequenced a delta variant (AY.3) from a 12-year-old Collie living with owners that previously tested positive for SARS-CoV-2. It is unclear if the dogs' symptoms were related to SARS-CoV-2 infection or underlying conditions. The whole genome sequence obtained from the dog sample had several unique consensus level changes not previously identified in a SARS-CoV-2 genome that may play a role in the rapid adaptation from humans to dogs. Within the spike coding region, 5/7 of the subconsensus variants identified in the dog sequence were also identified in the closest in-house human reference case. Taken together, the whole genome sequence, and phylogenetic and subconsensus variant analyses indicate the virus infecting the animal originated from a local outbreak cluster. The results of these analyses emphasize the importance of rapid detection and characterization of SARS-CoV-2 variants of concern in companion animals.


Assuntos
COVID-19/veterinária , Doenças do Cão/virologia , Genoma Viral/genética , SARS-CoV-2/genética , Animais , COVID-19/mortalidade , COVID-19/transmissão , Reservatórios de Doenças/virologia , Cães , Kansas , Masculino , SARS-CoV-2/isolamento & purificação , Sequenciamento Completo do Genoma
11.
J Med Virol ; 93(9): 5588-5593, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34138474

RESUMO

Reverse transcription fluorescence resonance energy transfer-polymerase chain reaction (FRET-PCRs) were designed against the two most common mutations in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (A23403G in the spike protein; C14408T in the RNA-dependent RNA polymerase). Based on high-resolution melting curve analysis, the reverse transcription (RT) FRET-PCRs identified the mutations in american type culture collection control viruses, and feline and human clinical samples. All major makes of PCR machines can perform melting curve analysis and thus further specifically designed FRET-PCRs could enable active surveillance for mutations and variants in countries where genome sequencing is not readily available.


Assuntos
Teste Sorológico para COVID-19/métodos , Reação em Cadeia da Polimerase , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/diagnóstico , COVID-19/virologia , Gatos , RNA-Polimerase RNA-Dependente de Coronavírus/análise , RNA-Polimerase RNA-Dependente de Coronavírus/imunologia , Humanos , Mutação , RNA Viral/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/imunologia , Temperatura
12.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33950806

RESUMO

Rotavirus C (RVC) is associated with acute diarrhoea in both children and young animals. Because of its frequent occurrence, additional sequences have recently been generated. In this study, we sequenced 21 complete genomes from porcine diarrhoea samples and analysed them together with all available reference sequences collected from the GenBank database [National Center for Biotechnology Information (NCBI)]. Based on phylogenetic analysis and genetic distance calculation, the number of each segment was identified as 31G, 26P, 13I, 5R, 5C, 5M, 12A, 10 N, 9T, 8E and 4 H for genotypes encoding VP7, VP4, VP6, VP1, VP2, VP3 and NSP1, NSP2, NSP3, NSP4 and NSP5, respectively. From the analysis, genotypes G19-G31, P[22]-P[26], R5, A9-A12, N9-N10, T7-T9 and E6-E8 were defined as newly identified genotypes, and genotype C6 was combined with C5, and M6 was combined with M1, due to their closely related nature. Estimated with the identity frequency ratio between the intergenotype and intragenotype, the nucleotide identity cutoff values for different genotypes were determined as 85, 85, 86, 84, 83, 84, 82, 87, 84, 81 and 79 % for VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5, respectively. Genotyping of the 49 US strains indicated possible segment reassortment in 9 of the 11 segments, with the exceptions being VP1 and NSP5, and the most prevalent genotypes for each segment genes in the USA were G6/G5/G21/G9-P5/P4-I6/I5-R1-C5-M1-A8-N1/N10-T1-E1-H1. Our study updated the genotypes of RVC strains and provided more evidence of RVC strain diversity that may be relevant to better understand genetic diversity, and the distribution and evolution of RVC strains.


Assuntos
Variação Genética , Genoma Viral , Infecções por Rotavirus/veterinária , Rotavirus/classificação , Rotavirus/genética , Doenças dos Suínos/virologia , Animais , Bases de Dados de Ácidos Nucleicos , Diarreia/veterinária , Diarreia/virologia , Evolução Molecular , Genes Virais , Genótipo , Filogenia , Infecções por Rotavirus/virologia , Suínos , Estados Unidos , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , Sequenciamento Completo do Genoma
13.
Transbound Emerg Dis ; 68(3): 1414-1423, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32816334

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically devastating diseases in swine population in the United States of America. Due to high mutation rate of the PRRS virus (PRRSV) genome, it is difficult to develop an accurate diagnostic assay with high strain coverage. Differentiation of field strains from the four vaccines that have been used in the USA, namely Ingelvac PRRS MLV, Ingelvac ATP, Fostera PRRS and Prime Pac PRRS, adds an additional challenge. It is difficult to use current real-time PCR systems to detect and differentiate the field strains from the vaccine strains. Luminex xTAG technology allows us to detect more molecular targets in a single reaction with a cost similar to a single real-time PCR reaction. By analysing all available 678 type 2 PRRSV (PRRSV-2) complete genome sequences, including the 4 vaccine strains, two pairs of detection primers were designed targeting the conserved regions of ORF4-ORF7, with strain coverage of 98.8% (670/678) based on in silico analysis. The virus strains sharing ≥98% identity of the complete genomes with the vaccine strains were considered vaccine or vaccine-like strains. One pair of primers for each vaccine strain were designed targeting the nsp2 region. In silico analysis showed the assay matched 94.7% (54/57) of Ingelvac PRRS® MLV (MLV) strain and the MLV-like strains, and 100% of the other three vaccine strains. Analytical sensitivity of the Luminex assay was one to two logs lower than that of the reverse transcription real-time PCR assay. Evaluated with 417 PRRSV-2 positive clinical samples, 95% were detected by the Luminex assay. Compared to ORF5 sequencing results, the Luminex assay detected 92.4% (73/79) of MLV strains, 78.3% (18/23) of Fostera strains and 50% (2/4) of ATP strains. None of the 472 samples were the Prime Pac strain tested by either ORF5 sequencing or the Luminex assay.


Assuntos
Separação Imunomagnética/veterinária , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Animais , Sequência de Bases , Separação Imunomagnética/métodos , Síndrome Respiratória e Reprodutiva Suína/classificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Sus scrofa , Suínos , Estados Unidos , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia
14.
J Virol Methods ; 286: 113971, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926893

RESUMO

A multiplex quantitative real-time polymerase chain reaction (mqPCR) assay was developed and validated for detection and differentiation of porcine circovirus type 2 (PCV2) genotypes, PCV2a, PCV2b and PCV2d. Single nucleotide polymorphism in primers or probes was deployed for different genotype detections, while conserved sequence in the 3' end of a primer and in the middle of a probe was used for the targeted genotype. In silico analysis of 2601 PCV2 ORF2 sequences showed that the predicted strain coverage of the assay was 93.4 % (409/438) for PCV2a, 95.1 % (1161/1221) for PCV2b and 93.6 % (882/942) for PCV2d strains. The PCR amplification efficiencies were 94.5 %, 100.2 %, and 99.2 % for PCV2a, PCV2b and PCV2d, respectively, with correlation coefficients >0.995 for all genotypes. The limits of detection (LOD) were 1.58 × 10-4 TCID50/mL for PCV2a, 5.62 × 10-4 TCID50/mL for PCV2b, and 3.16 × 10-3 TCID50/mL for PCV2d. Sanger sequencing of 74 randomly selected PCV2 positive clinical samples confirmed the genotypes of strains identified by the mqPCR. Validation with clinical samples co-positive for target and non-target pathogens demonstrated that the mqPCR assay specifically detected targeted viruses without cross reacting to each other or to other common porcine viruses.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Animais , Infecções por Circoviridae/diagnóstico , Infecções por Circoviridae/veterinária , Circovirus/genética , Genótipo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Doenças dos Suínos/diagnóstico
15.
Transbound Emerg Dis ; 67(6): 2446-2454, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32306531

RESUMO

Real-time PCR assays are highly sensitive, specific and rapid techniques for the identification of ASF virus (ASFV) (Section 3.8, OIE Terrestrial Manual, 2019). Although an ASFV p72 gene-based real-time PCR assay (a.k.a. the Zsak assay) (Journal of Clinical Microbiology, 2005, 43, 112) has been widely used for ASFV detection, several more ASFV whole genome sequences have become available in the 15 years since the design of the Zsak assay. In this study, we developed a new ASFV p72 gene-based real-time PCR after analysis of all currently available sequences of the p72 gene and multiplexed the new assay with a modified Zsak assay aiming to have a broader coverage of ASFV strain/isolates. To reduce false-negative detections, porcine house-keeping gene, beta actin (ACTB), was applied as an internal control. Eight ACTB sequences from the GenBank and 61 partial ACTB sequences generated in this study, and 1,012 p72 sequences from the GenBank and 23 p72 sequences generated at FADDL, were used for ACTB and ASFV primer and probe designs, respectively, to ensure broader host and ASFV coverage. Multiplexing ACTB in the reaction did not affect ASFV amplification. The multiplex assay was evaluated for strain/isolate coverage, sensitivity and specificity. The in silico analysis showed high ASFV strain/isolate coverage: 98.4% (978/994) of all p72 sequences currently available. The limit of detection (LOD) was 6 plasmid copies or 0.1-1 TCID50 /ml of ASFV isolates per reaction. Only targeted ASFV isolates and the viruses in the positive clinical samples were detected, indicating that the assay is highly specific (100% specificity). The test results of 26 ASFV isolates with different country origins showed that this newly developed multiplex assay performed better than the Zsak assay that has been widely accepted and used worldwide, indicating that it may be used as an alternative assay for ASFV detection.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/diagnóstico , Febre Suína Africana/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Actinas/genética , Vírus da Febre Suína Africana/genética , Animais , Primers do DNA , Sondas de DNA , DNA Viral/genética , Sensibilidade e Especificidade , Suínos
16.
Foodborne Pathog Dis ; 17(10): 611-619, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32286857

RESUMO

The objectives of this study were (1) to estimate the prevalence and concentration of the seven major Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157), collectively called STEC-7, on cattle hides collected in different seasons and beef processing plants; and (2) to determine associations of season, plant, and hide cleanliness scores with the prevalence and concentration of STEC-7. A total of 720 hide surface samples (240/season) were collected over three seasons (summer and fall 2015 and spring 2016) from beef cattle carcasses in four commercial processing plants in the United States. Samples were subjected to selective culture and spiral plating methods. Overall model-adjusted mean prevalence (95% confidence interval) was 0.3% (0.03-2.3%) for STEC O26; 0.05% (<0.01-8.5%) for STEC O45; 0.2% (0.02-1.9%) for STEC O103; 0.05% (<0.01-8.5%) for STEC O145; and 3.1% (0.6-15.2%) for STEC O157. Four percent of hide samples were enumerable for STEC O157; mean concentration (standard deviation) = 2.1 (0.7) log10 colony-forming units (CFUs)/100 cm2. No samples were enumerable for non-O157 STEC. Hide-on prevalence of STEC O157 and STEC non-O157 (specifically of STEC O103) was higher in summer and spring, respectively. Across seasons and plants, the most common STEC non-O157 serogroups in this study (O26 and O103) were associated with a higher prevalence of STEC O157. Season and plant played a role in prevalence and concentration of STEC in beef cattle hides, varying by serogroup. Tailoring mitigation strategies at the plant can be challenging and processors would benefit from supplementary preharvest interventions to reduce overall contamination pressure at the plant, especially in fall and spring months when hide-on prevalence of STEC non-O157 is higher.


Assuntos
Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Carne Vermelha/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Pele/microbiologia , Matadouros , Animais , Bovinos , Contagem de Colônia Microbiana , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Reação em Cadeia da Polimerase , Prevalência , Estações do Ano , Sorogrupo , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Estados Unidos/epidemiologia
17.
J Microbiol Methods ; 172: 105887, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32165161

RESUMO

Streptococcus equi subsp. equi is a Gram positive bacterial pathogen commonly associated with strangles in horses, a respiratory disease characterized by abscessation of submandibular and retropharyngeal lymph nodes which can lead to obstruction of the airway. Several real-time PCR (qPCR) assays have been developed for detection of S. equi from horses with many targeting conserved regions of the S. equi cell wall-associated M-protein (SeM), a major virulence factor and immunogen of S. equi. Our objective was to develop a nested PCR (nPCR) targeting SeM and an 18S rRNA internal control gene for detection of S. equi from horses with potential improvement in detection sensitivity compared to a qPCR. Primers and probes from the Kansas State Veterinary Diagnostic Laboratory (KSVDL) S. equi clinical testing assay were utilized for all qPCR testing. Primers flanking the SeM qPCR target region were selected for an initial end-point PCR step of the nested assay; PCR product from the end-point reaction then served as template for the qPCR reaction step of the nested assay. Sample nucleic acid was also tested directly with qPCR to allow for assay comparison. Nucleic acid from clinical specimens (n = 188) submitted to KSVDL were tested in parallel with each assay. The nPCR and qPCR assays identified 22.9% (43/188) and 13.3% (25/188) of samples positive for S. equi, respectively. None of the samples positive by qPCR were negative by nPCR. The PCR products from all positive samples were submitted for DNA sequencing. Each of the 25 samples positive by both assays had a high nucleotide identity match (>96%) to the SeM gene. Among the samples positive by nPCR but negative by qPCR, 17 of 18 were sequence confirmed for SeM at greater than 96% nucleotide identity. Based on the nPCR Ct (37.8) of the one sequence un-confirmed case, it is likely that the S. equi bacterial load in this sample was below the necessary concentration for successful sequencing. Limit of detection (LOD) for the nPCR was established at a Ct of 37, and based both on the LOD of the qPCR assay (Ct of 37), as determined by standard curve data, and on the highest nPCR Cts (~37) of clinical samples able to result in SeM sequence-confirmation. As demonstrated by sequencing confirmation, the nPCR assay targeting the SeM gene is highly specific to S. equi. The increased sensitivity of the nPCR, compared to the qPCR, may reduce the number of false negative sample results in clinical testing and provide a superior detection method during low bacterial shedding periods.


Assuntos
Doenças dos Cavalos/diagnóstico , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/veterinária , Streptococcus/genética , Streptococcus/isolamento & purificação , Animais , DNA Bacteriano/análise , Doenças dos Cavalos/microbiologia , Cavalos , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Infecções Estreptocócicas/microbiologia
18.
J Clin Microbiol ; 58(3)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31896667

RESUMO

Escherichia coli serogroups O157, O26, O45, O103, O111, O121, and O145, when carrying major virulence genes, the Shiga toxin genes stx1 and stx2 and the intimin gene eae, are important foodborne pathogens. They are referred to as the "top 7" Shiga toxin-producing E. coli (STEC) serogroups and were declared by the USDA as adulterants to human health. Since top 7 serogroup-positive cattle feces and ground beef can also contain nonadulterant E. coli strains, regular PCR cannot confirm whether the virulence genes are carried by adulterant or nonadulterant E. coli serogroups. Thus, traditional gold-standard STEC detection requires bacterial isolation and characterization, which are not compatible with high-throughput settings and often take a week to obtain a definitive result. In this study, we demonstrated that the partition-based multichannel digital PCR (dPCR) system can be used to detect and associate the E. coli serogroup-specific gene with major virulence genes and developed a single-cell-based dPCR approach for rapid (within 1 day) and accurate detection and confirmation of major STEC serogroups in high-throughput settings. Major virulence genes carried by each of the top 7 STEC serogroups were detected by dPCR with appropriately diluted intact bacterial cells from pure cultures, culture-spiked cattle feces, and culture-spiked ground beef. Furthermore, from 100 randomly collected, naturally shed cattle fecal samples, 3 O103 strains carrying eae and 2 O45 strains carrying stx1 were identified by this dPCR assay and verified by the traditional isolation method. This novel and rapid dPCR assay is a culture-independent, high-throughput, accurate, and sensitive method for STEC detection and confirmation.


Assuntos
Reação em Cadeia da Polimerase/métodos , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Análise de Célula Única/métodos , Fatores de Virulência/genética , Animais , Bovinos , DNA Bacteriano , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Microbiologia de Alimentos , Genes Bacterianos , Carne/microbiologia , Antígenos O/genética , Sorogrupo , Toxina Shiga , Escherichia coli Shiga Toxigênica/genética
19.
Transbound Emerg Dis ; 67(2): 604-616, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31550077

RESUMO

Foot-and-mouth disease virus (FMDV) causes a highly contagious and economically important vesicular disease in cloven-hoofed animals that is clinically indistinguishable from symptoms caused by Seneca Valley virus 1 (SVV-1). To differentiate SVV-1 from FMDV infections, we developed a SVV-1 real-time RT-PCR (RT-qPCR) assay and multiplexed with published FMDV assays. Two published FMDV assays (Journal of the American Veterinary Medical Association, 220, 2002, 1636; Journal of Virological Methods, 236, 2016, 258) targeting the 3D polymerase (3D) region were selected and multiplexed with the SVV-1 assay that has two targets, one in the 5' untranslated region (5' UTR, this study) and the other in the 3D region (Journal of Virological Methods, 239, 2017, 34). In silico analysis showed that the primers and probes of SVV-1 assay matched 98.3% of the strain sequences (113/115). The primer and probe sequences of the Shi FMDV assay matched 85.4% (806/944), and that of the Callahan FMDV assay matched 62.7% (592/944) of the sequences. The limit of detection (LOD) for the two multiplex RT-qPCR assays for SVV-1 was both 9 copies per reaction by cloned positive plasmids and 0.16 TCID50 per reaction by cell culture. The LOD for FMDV by both multiplex assays was 11 copies per reaction using cloned positive plasmids. With cell cultures of the seven serotypes of FMDV, the Shi assay (Journal of Virological Methods, 236, 2016, 258) had LODs between 0.04 and 0.18 TCID50 per reaction that were either the same or lower than the Callahan assay. Interestingly, multiplexing with SVV-1 increased the amplification efficiencies of the Callahan assay (Journal of the American Veterinary Medical Association, 220, 2002, 1636) from 51.5%-66.7% to 89.5%-96.6%. Both assays specifically detected the target viruses without cross-reacting to SVV-1 or to other common porcine viruses. An 18S rRNA housekeeping gene that was amplified from multiple cloven-hoofed animal species was used as an internal control. The prevalence study did not detect any FMDV, but SVV-1 was detected from multiple types of swine samples with an overall positive rate of 10.5% for non-serum samples.


Assuntos
Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/virologia , Reação em Cadeia da Polimerase Multiplex/veterinária , Doenças dos Suínos/virologia , Regiões 5' não Traduzidas/genética , Animais , Primers do DNA/genética , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Limite de Detecção , Picornaviridae/genética , Picornaviridae/isolamento & purificação , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Sensibilidade e Especificidade , Sorogrupo , Suínos
20.
Transbound Emerg Dis ; 67(3): 1284-1294, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31886622

RESUMO

In recent years, reports indicated that PCV3 may be involved in porcine dermatitis and nephropathy syndrome (PDNS)-like disease similar to that linked to PCV2. A total of 2,125 porcine samples from 910 cases were collected during 2016-2018 and tested for presence of PCV3 and PCV2 by real-time PCR assays. Results showed high prevalence of PCV3 and PCV2: 28.4% samples from 41.2% cases were PCV3 positive and 16.4% samples from 16.7% cases were PCV2 positive. The overall coinfection rate was 5.4% and 8.4% at the sample and case level, respectively. Temporal analysis indicated that PCV3 positive case rate increased from 31.6% in 2016, 40.9% in 2017, to 55.6% in 2018. Although its prevalence was lower, PCV2-positive case rate in 2018 (28.8%) doubled that in 2017 (14.4%). The coinfection case rate also increased from 3.4% in 2016, 8.0% in 2017 to 16.1% in 2018. The high positive rate of PCV3 (56.9%) and PCV2 (33.8%) in oral fluids, PCV3 in foetuses (57.1%) and PCV2 in tonsils (54.8%) implied viral transmission route and tissue tropism. In phylogenetic analysis, two small PCV3 clusters (1 and 2) were separated but others were clustered with low bootstrapping values indicating overall low genetic diversity. Genotypes, PCV2a-h, were confirmed by analysing 2,944 strains, with a new genotype proposed as PCV2i. In this study, 61 PCV3 unique whole genomes were sequenced; 12 belonged to a separate cluster that were characterized by five consistent amino acid changes in the capsid protein (24V, 27K, 56D, 98R and 168K) and may be associated with potential differences in immunogenicity. Among the 43 unique PCV2 whole genomes sequenced, 31 belonged to PCV2d, 7 to PCV2a and 5 to PCV2b. Thus, our study demonstrates that PCV2d is the predominant genotype and PCV3 is widely circulating in the Midwest of the USA.


Assuntos
Infecções por Circoviridae/virologia , Circovirus/genética , Variação Genética , Doenças dos Suínos/virologia , Animais , Proteínas do Capsídeo/genética , Circovirus/classificação , Coinfecção , Genótipo , Meio-Oeste dos Estados Unidos/epidemiologia , Filogenia , Prevalência , Suínos , Doenças dos Suínos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...