Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5950-5958, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38452198

RESUMO

Loss of the translational reading frame leads to misincorporation and premature termination, which can have lethal consequences. Based on structural evidence that A1503 of 16S rRNA intercalates between specific mRNA bases, we tested the possibility that it plays a role in maintenance of the reading frame by constructing ribosomes with an abasic nucleotide at position 1503. This was done by specific cleavage of 16S rRNA at position 1493 using the colicin E3 endonuclease and replacing the resulting 3'-terminal 49mer fragment with a synthetic oligonucleotide containing the abasic site using a novel splinted RNA ligation method. Ribosomes reconstituted from the abasic 1503 16S rRNA were highly active in protein synthesis but showed elevated levels of spontaneous frameshifting into the -1 reading frame. We then asked whether the residual frameshifting persisting in control ribosomes containing an intact A1503 is due to the absence of the N6-dimethyladenosine modifications at positions 1518 and 1519. Indeed, this frameshifting was rescued by site-specific methylation in vitro by the ksgA methylase. These findings thus implicate two different sites near the 3' end of 16S rRNA in maintenance of the translational reading frame, providing yet another example of a functional role for ribosomal RNA in protein synthesis.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Biossíntese de Proteínas , RNA Ribossômico 16S , Ribossomos , RNA Ribossômico 16S/genética , Ribossomos/metabolismo , Ribossomos/genética , Nucleotídeos/química , Nucleotídeos/genética , Metilação , Fases de Leitura Aberta , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Conformação de Ácido Nucleico , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química
2.
Proc Natl Acad Sci U S A ; 119(44): e2212502119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282914

RESUMO

Translocation of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome is catalyzed by the GTPase elongation factor G (EF-G) in bacteria. Although guanosine-5'-triphosphate (GTP) hydrolysis accelerates translocation and is required for dissociation of EF-G, its fundamental role remains unclear. Here, we used ensemble Förster resonance energy transfer (FRET) to monitor how inhibition of GTP hydrolysis impacts the structural dynamics of the ribosome. We used FRET pairs S12-S19 and S11-S13, which unambiguously report on rotation of the 30S head domain, and the S6-L9 pair, which measures intersubunit rotation. Our results show that, in addition to slowing reverse intersubunit rotation, as shown previously, blocking GTP hydrolysis slows forward head rotation. Surprisingly, blocking GTP hydrolysis completely abolishes reverse head rotation. We find that the S13-L33 FRET pair, which has been used in previous studies to monitor head rotation, appears to report almost exclusively on intersubunit rotation. Furthermore, we find that the signal from quenching of 3'-terminal pyrene-labeled mRNA, which is used extensively to follow mRNA translocation, correlates most closely with reverse intersubunit rotation. To account for our finding that blocking GTP hydrolysis abolishes a rotational event that occurs after the movements of mRNA and tRNAs are essentially complete, we propose that the primary role of GTP hydrolysis is to create an irreversible step in a mechanism that prevents release of EF-G until both the tRNAs and mRNA have moved by one full codon, ensuring productive translocation and maintenance of the translational reading frame.


Assuntos
Fator G para Elongação de Peptídeos , Ribossomos , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/química , Guanosina Trifosfato/química , Hidrólise , Ribossomos/metabolismo , RNA de Transferência/química , RNA Mensageiro/química , GTP Fosfo-Hidrolases/genética , Pirenos/análise , Guanosina
3.
RNA ; 28(5): 623-644, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35115361

RESUMO

The ribosomal RNAs, along with their substrates the transfer RNAs, contain the most highly conserved nucleotides in all of biology. We have assembled a database containing structure-based alignments of sequences of the small-subunit rRNAs from organisms that span the entire phylogenetic spectrum, to identify the nucleotides that are universally conserved. In its simplest (bacterial and archaeal) forms, the small-subunit rRNA has ∼1500 nt, of which we identify 140 that are absolutely invariant among the 1961 species in our alignment. We examine the positions and detailed structural and functional interactions of these universal nucleotides in the context of a half century of biochemical and genetic studies and high-resolution structures of ribosome functional complexes. The vast majority of these nucleotides are exposed on the subunit interface surface of the small subunit, where the functional processes of the ribosome take place. However, only 40 of them have been directly implicated in specific ribosomal functions, such as contacting the tRNAs, mRNA, or translation factors. The roles of many other invariant nucleotides may serve to constrain the positions and orientations of those nucleotides that are directly involved in function. Yet others can be rationalized by participation in unusual noncanonical tertiary structures that may uniquely allow correct folding of the rRNA to form a functional ribosome. However, there remain at least 50 nt whose universal conservation is not obvious, serving as a metric for the incompleteness of our understanding of ribosome structure and function.


Assuntos
Nucleotídeos , RNA Ribossômico , Conformação de Ácido Nucleico , Nucleotídeos/genética , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Ribossomos/genética
4.
RNA ; 27(1): 40-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33008838

RESUMO

A recent crystal structure of a ribosome complex undergoing partial translocation in the absence of elongation factor EF-G showed disruption of codon-anticodon pairing and slippage of the reading frame by -1, directly implicating EF-G in preservation of the translational reading frame. Among mutations identified in a random screen for dominant-lethal mutations of EF-G were a cluster of six that map to the tip of domain IV, which has been shown to contact the codon-anticodon duplex in trapped translocation intermediates. In vitro synthesis of a full-length protein using these mutant EF-Gs revealed dramatically increased -1 frameshifting, providing new evidence for a role for domain IV of EF-G in maintaining the reading frame. These mutations also caused decreased rates of mRNA translocation and rotational movement of the head and body domains of the 30S ribosomal subunit during translocation. Our results are in general agreement with recent findings from Rodnina and coworkers based on in vitro translation of an oligopeptide using EF-Gs containing mutations at two positions in domain IV, who found an inverse correlation between the degree of frameshifting and rates of translocation. Four of our six mutations are substitutions at positions that interact with the translocating tRNA, in each case contacting the RNA backbone of the anticodon loop. We suggest that EF-G helps to preserve the translational reading frame by preventing uncoupled movement of the tRNA through these contacts; a further possibility is that these interactions may stabilize a conformation of the anticodon that favors base-pairing with its codon.


Assuntos
Escherichia coli/genética , Mudança da Fase de Leitura do Gene Ribossômico , Mutação , Elongação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/genética , Ribossomos/genética , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Códon/química , Códon/metabolismo , Escherichia coli/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Mensageiro , RNA de Transferência , Fases de Leitura , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(19): 10271-10277, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341159

RESUMO

Viomycin, an antibiotic that has been used to fight tuberculosis infections, is believed to block the translocation step of protein synthesis by inhibiting ribosomal subunit dissociation and trapping the ribosome in an intermediate state of intersubunit rotation. The mechanism by which viomycin stabilizes this state remains unexplained. To address this, we have determined cryo-EM and X-ray crystal structures of Escherichia coli 70S ribosome complexes trapped in a rotated state by viomycin. The 3.8-Å resolution cryo-EM structure reveals a ribosome trapped in the hybrid state with 8.6° intersubunit rotation and 5.3° rotation of the 30S subunit head domain, bearing a single P/E state transfer RNA (tRNA). We identify five different binding sites for viomycin, four of which have not been previously described. To resolve the details of their binding interactions, we solved the 3.1-Å crystal structure of a viomycin-bound ribosome complex, revealing that all five viomycins bind to ribosomal RNA. One of these (Vio1) corresponds to the single viomycin that was previously identified in a complex with a nonrotated classical-state ribosome. Three of the newly observed binding sites (Vio3, Vio4, and Vio5) are clustered at intersubunit bridges, consistent with the ability of viomycin to inhibit subunit dissociation. We propose that one or more of these same three viomycins induce intersubunit rotation by selectively binding the rotated state of the ribosome at dynamic elements of 16S and 23S rRNA, thus, blocking conformational changes associated with molecular movements that are required for translocation.


Assuntos
Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Viomicina/farmacologia , Antibacterianos/farmacologia , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química
6.
Mol Cell ; 75(5): 1007-1019.e5, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31471187

RESUMO

The movement of ribosomes on mRNA is often interrupted by secondary structures that present mechanical barriers and play a central role in translation regulation. We investigate how ribosomes couple their internal conformational changes with the activity of translocation factor EF-G to unwind mRNA secondary structures using high-resolution optical tweezers with single-molecule fluorescence capability. We find that hairpin opening occurs during EF-G-catalyzed translocation and is driven by the forward rotation of the small subunit head. Modulating the magnitude of the hairpin barrier by force shows that ribosomes respond to strong barriers by shifting their operation to an alternative 7-fold-slower kinetic pathway prior to translocation. Shifting into a slow gear results from an allosteric switch in the ribosome that may allow it to exploit thermal fluctuations to overcome mechanical barriers. Finally, we observe that ribosomes occasionally open the hairpin in two successive sub-codon steps, revealing a previously unobserved translocation intermediate.


Assuntos
Escherichia coli/química , Conformação de Ácido Nucleico , Pinças Ópticas , RNA Bacteriano/química , RNA Mensageiro/química , Ribossomos/química , Escherichia coli/metabolismo , Fluorescência , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
7.
FEBS Lett ; 593(10): 1009-1019, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972734

RESUMO

During protein synthesis, the messenger RNA (mRNA) helicase activity of the ribosome ensures that codons are made single stranded before decoding. Here, based on recent structural and functional findings, a quantitative model is presented for a tandem arrangement of two helicase active sites on the ribosome. A distal site encounters mRNA structures first, one elongation cycle earlier than a proximal site. Although unwinding of encountered mRNA structures past the proximal site is required for translocation, two routes exist for translocation past the distal site: sliding, which requires unwinding, and stick-slip, which does not. The model accounts in detail for a number of findings related to the ribosomal helicase and provides a testable framework to further study mRNA unwinding.


Assuntos
Domínio Catalítico , Modelos Moleculares , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/enzimologia , Humanos , Conformação Proteica , RNA Helicases/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(16): 7813-7818, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936299

RESUMO

The elongation factor G (EF-G)-catalyzed translocation of mRNA and tRNA through the ribosome is essential for vacating the ribosomal A site for the next incoming aminoacyl-tRNA, while precisely maintaining the translational reading frame. Here, the 3.2-Å crystal structure of a ribosome translocation intermediate complex containing mRNA and two tRNAs, formed in the absence of EF-G or GTP, provides insight into the respective roles of EF-G and the ribosome in translocation. Unexpectedly, the head domain of the 30S subunit is rotated by 21°, creating a ribosomal conformation closely resembling the two-tRNA chimeric hybrid state that was previously observed only in the presence of bound EF-G. The two tRNAs have moved spontaneously from their A/A and P/P binding states into ap/P and pe/E states, in which their anticodon loops are bound between the 30S body domain and its rotated head domain, while their acceptor ends have moved fully into the 50S P and E sites, respectively. Remarkably, the A-site tRNA translocates fully into the classical P-site position. Although the mRNA also undergoes movement, codon-anticodon interaction is disrupted in the absence of EF-G, resulting in slippage of the translational reading frame. We conclude that, although movement of both tRNAs and mRNA (along with rotation of the 30S head domain) can occur in the absence of EF-G and GTP, EF-G is essential for enforcing coupled movement of the tRNAs and their mRNA codons to maintain the reading frame.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/fisiologia , RNA Mensageiro , RNA de Transferência , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/metabolismo , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
9.
RNA ; 25(3): 364-375, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552154

RESUMO

Protein synthesis in all organisms proceeds by stepwise translocation of the ribosome along messenger RNAs (mRNAs), during which the helicase activity of the ribosome unwinds encountered structures in the mRNA. This activity is known to occur near the mRNA tunnel entrance, which is lined by ribosomal proteins uS3, uS4, and uS5. However, the mechanism(s) of mRNA unwinding by the ribosome and the possible role of these proteins in the helicase activity are not well understood. Here, we present a crystal structure of the Escherichia coli ribosome in which single-stranded mRNA is observed beyond the tunnel entrance, interacting in an extended conformation with a positively charged patch on ribosomal protein uS3 immediately outside the entrance. This apparent binding specificity for single-stranded mRNA ahead of the tunnel entrance suggests that product stabilization may play a role in the unwinding of structured mRNA by the ribosomal helicase.


Assuntos
RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/genética , Ribossomos/metabolismo , Sítios de Ligação , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Relação Estrutura-Atividade
10.
Nat Struct Mol Biol ; 24(12): 1021-1027, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215639

RESUMO

During protein synthesis, mRNA and tRNAs must be moved rapidly through the ribosome while maintaining the translational reading frame. This process is coupled to large- and small-scale conformational rearrangements in the ribosome, mainly in its rRNA. The free energy from peptide-bond formation and GTP hydrolysis is probably used to impose directionality on those movements. We propose that the free energy is coupled to two pawls, namely tRNA and EF-G, which enable two ratchet mechanisms to act separately and sequentially on the two ribosomal subunits.


Assuntos
Bactérias/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/metabolismo , Bactérias/genética , Modelos Moleculares , Fator G para Elongação de Peptídeos/metabolismo , Conformação Proteica , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo
11.
Q Rev Biophys ; 50: e12, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233224

RESUMO

Ribosomes are remarkable ribonucleoprotein complexes that are responsible for protein synthesis in all forms of life. They polymerize polypeptide chains programmed by nucleotide sequences in messenger RNA in a mechanism mediated by transfer RNA. One of the most challenging problems in the ribosome field is to understand the mechanism of coupled translocation of mRNA and tRNA during the elongation phase of protein synthesis. In recent years, the results of structural, biophysical and biochemical studies have provided extensive evidence that translocation is based on the structural dynamics of the ribosome itself. Detailed structural analysis has shown that ribosome dynamics, like aminoacyl-tRNA selection and catalysis of peptide bond formation, is made possible by the properties of ribosomal RNA.


Assuntos
RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Animais , Transporte Biológico , Movimento , Biossíntese de Proteínas , RNA Ribossômico/genética , Ribossomos/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-28138073

RESUMO

The basic steps of protein synthesis are carried out by the ribosome, a very large and complex ribonucleoprotein particle. In keeping with its proposed emergence from an RNA world, all three of its core mechanisms-aminoacyl-tRNA selection, catalysis of peptide bond formation and coupled translocation of mRNA and tRNA-are embodied in the properties of ribosomal RNA, while its proteins play a supportive role.This article is part of the themed issue 'Perspectives on the ribosome'.


Assuntos
Biossíntese de Proteínas , RNA/metabolismo , Aminoacilação de RNA de Transferência , Translocação Genética , Origem da Vida
13.
Nat Commun ; 8: 14285, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176782

RESUMO

The L1 stalk of the large ribosomal subunit undergoes large-scale movements coupled to the translocation of deacylated tRNA during protein synthesis. We use quantitative comparative structural analysis to localize the origins of L1 stalk movement and to understand its dynamic interactions with tRNA and other structural elements of the ribosome. Besides its stacking interactions with the tRNA elbow, stalk movement is directly linked to intersubunit rotation, rotation of the 30S head domain and contact of the acceptor arm of deacylated tRNA with helix 68 of 23S rRNA. Movement originates from pivoting at stacked non-canonical base pairs in a Family A three-way junction and bending in an internal G-U-rich zone. Use of these same motifs as hinge points to enable such dynamic events as rotation of the 30S subunit head domain and in flexing of the anticodon arm of tRNA suggests that they represent general strategies for movement of functional RNAs.


Assuntos
Motivos de Nucleotídeos/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Ribossômico 23S/química , RNA de Transferência/fisiologia , Subunidades Ribossômicas Maiores/fisiologia , Conjuntos de Dados como Assunto , Modelos Moleculares , RNA Ribossômico 23S/fisiologia , Proteínas Ribossômicas/fisiologia
14.
RNA ; 21(4): 478-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25780101
15.
Nature ; 519(7541): 110-3, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652826

RESUMO

The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.


Assuntos
Bactérias/genética , Eucariotos/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas/genética , RNA/química , RNA/genética , Ribossomos/metabolismo , Sequência de Bases , Sequência Conservada/genética , Cristalografia por Raios X , Dicistroviridae/genética , Modelos Moleculares , Iniciação Traducional da Cadeia Peptídica/genética , RNA/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Ribossomos/química
16.
Science ; 345(6201): 1188-91, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190797

RESUMO

Coupled translocation of messenger RNA and transfer RNA (tRNA) through the ribosome, a process catalyzed by elongation factor EF-G, is a crucial step in protein synthesis. The crystal structure of a bacterial translocation complex describes the binding states of two tRNAs trapped in mid-translocation. The deacylated P-site tRNA has moved into a partly translocated pe/E chimeric hybrid state. The anticodon stem-loop of the A-site tRNA is captured in transition toward the 30S P site, while its 3' acceptor end contacts both the A and P loops of the 50S subunit, forming an ap/ap chimeric hybrid state. The structure shows how features of ribosomal RNA rearrange to hand off the A-site tRNA to the P site, revealing an active role for ribosomal RNA in the translocation process.


Assuntos
Fator G para Elongação de Peptídeos/química , RNA Mensageiro/química , RNA de Transferência/química , Subunidades Ribossômicas Maiores de Bactérias/química , Anticódon/química , Anticódon/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Thermus thermophilus
17.
Proc Natl Acad Sci U S A ; 111(37): 13325-30, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25187561

RESUMO

During ribosomal translocation, a process central to the elongation phase of protein synthesis, movement of mRNA and tRNAs requires large-scale rotation of the head domain of the small (30S) subunit of the ribosome. It has generally been accepted that the head rotates by pivoting around the neck helix (h28) of 16S rRNA, its sole covalent connection to the body domain. Surprisingly, we observe that the calculated axis of rotation does not coincide with the neck. Instead, comparative structure analysis across 55 ribosome structures shows that 30S head movement results from flexing at two hinge points lying within conserved elements of 16S rRNA. Hinge 1, although located within the neck, moves by straightening of the kinked helix h28 at the point of contact with the mRNA. Hinge 2 lies within a three-way helix junction that extends to the body through a second, noncovalent connection; its movement results from flexing between helices h34 and h35 in a plane orthogonal to the movement of hinge 1. Concerted movement at these two hinges accounts for the observed magnitudes of head rotation. Our findings also explain the mode of action of spectinomycin, an antibiotic that blocks translocation by binding to hinge 2.


Assuntos
Modelos Moleculares , Subunidades Ribossômicas/química , Rotação , Sequência de Bases , Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química , Espectinomicina/química , Espectinomicina/metabolismo , Thermus thermophilus/metabolismo
18.
RNA Biol ; 11(3): 225-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637459

RESUMO

Not long after my arrival at UCSC as an assistant professor, I came across Carl Woese's paper "Molecular Mechanics of Translation: A Reciprocating Ratchet Mechanism." (1) In the days before the crystal structure of tRNA was known, Fuller and Hodgson (2) had proposed two alternative conformations for its anticodon loop; one was stacked on the 3' side (as later found in the crystal structure) and the other on the 5' side. In an ingenious and elegant model, Woese proposed that the conformation of the loop flips between Fuller and Hodgson's 5'- and 3'-stacked forms during protein synthesis, changing the local direction of the mRNA such that the identities of the tRNA binding sites alternated between binding aminoacyl-tRNA and peptidyl-tRNA. The model predicted that there are no A and P sites, only two binding sites whose identities changed following translation of each codon, and that there would be no translocation of tRNAs in the usual sense--only binding and release. I met Carl in person the following year when he presented a seminar on his ratchet model in Santa Cruz. He was chatting in my colleague Ralph Hinegardner's office in what Carl termed a "Little Jack Horner appointment" (the visitor sits and listens to his host describing "What a good boy am I"). He was of compact stature, and bore a striking resemblance to Oskar Werner in Truffaut's film "Jules and Jim." He projected the impression of a New-Age guru--a shiny black amulet suspended over the front of his black turtleneck sweater and a crown of prematurely white hair. Ralph asked me to explain to Carl what we were doing with ribosomes. I quickly summarized our early experiments that were pointing to a functional role for 16S rRNA. Carl regarded me silently, with a penetrating stare. He then turned to Ralph and said, in an ominous low voice, "I'm going to have some more tanks made as soon as I get back." Carl's beautiful model was, unfortunately, wrong--it was simpler and more elegant than the complex mechanism that Nature actually uses. Unyielding, Carl railed against the A-site-P-site model at every opportunity, and although we ended up enjoying a long, intense, and fruitful collaboration, and became close, life-long friends, I finally gave up trying to describe to him our biochemical and crystallographic results on the A, P, and E sites.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico/química , RNA de Transferência/química , Evolução Molecular , RNA Ribossômico/genética
19.
Curr Opin Struct Biol ; 24: 165-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24524803

RESUMO

A system for naming ribosomal proteins is described that the authors intend to use in the future. They urge others to adopt it. The objective is to eliminate the confusion caused by the assignment of identical names to ribosomal proteins from different species that are unrelated in structure and function. In the system proposed here, homologous ribosomal proteins are assigned the same name, regardless of species. It is designed so that new names are similar enough to old names to be easily recognized, but are written in a format that unambiguously identifies them as 'new system' names.


Assuntos
Proteínas Ribossômicas/classificação , Terminologia como Assunto , Animais , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Humanos , Proteínas Ribossômicas/química , Subunidades Ribossômicas/química , Leveduras/química
20.
Proc Natl Acad Sci U S A ; 110(52): 20964-9, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324168

RESUMO

During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , Elongação Traducional da Cadeia Peptídica/fisiologia , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli , Processamento de Imagem Assistida por Computador , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...