Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37921705

RESUMO

WO3/BiVO4 heterojunction photoanodes can be efficiently employed in photoelectrochemical (PEC) cells for the conversion of water into molecular oxygen, the kinetic bottleneck of water splitting. Composite WO3/BiVO4 photoelectrodes possessing a nanoflake-like morphology have been synthesized through a multistep process and their PEC performance was investigated in comparison to that of WO3/BiVO4 photoelectrodes displaying a planar surface morphology and similar absorption properties and thickness. PEC tests, also in the presence of a sacrificial hole scavenger, electrochemical impedance analysis under simulated solar irradiation, and incident photon to current efficiency measurements highlighted that charge transport and charge recombination issues affecting the performance of the planar composite can be successfully overcome by nanostructuring the WO3 underlayer in nanoflake-like WO3/BiVO4 heterojunction electrodes.

2.
ACS Appl Energy Mater ; 6(19): 10020-10029, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37830012

RESUMO

CuWO4 is a ternary semiconductor oxide with excellent visible light harvesting properties up to 550 nm and stability at high pH values, which make it a suitable material to build photoanodes for solar light conversion to hydrogen via water splitting. In this work, we studied the photoelectrochemical (PEC) performance of transparent CuWO4 electrodes with tunable light absorption and thickness, aiming at identifying the intrinsic bottlenecks of photogenerated charge carriers in this semiconductor. We found that electrodes with optimal CuWO4 thickness exhibit visible light activity due to the absorption of long-wavelength photons and a balanced electron and hole extraction from the oxide. The PEC performance of CuWO4 is light-intensity-dependent, with charge recombination increasing with light intensity and most photogenerated charge carriers recombining in bulk sites, as demonstrated by PEC tests performed in the presence of sacrificial agents or cocatalysts. The best-performing 580 nm thick CuWO4 electrode delivers a photocurrent of 0.37 mA cm-2 at 1.23 VSHE, with a 7% absorbed photon to current efficiency over the CuWO4 absorption spectrum.

3.
Photochem Photobiol Sci ; 22(12): 2759-2768, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831332

RESUMO

CuWO4 has emerged in the last years as a ternary metal oxide material for photoanodes application in photoelectrochemical cells, thanks to its relatively narrow band gap, high stability and selectivity toward the oxygen evolution reaction, though largely limited by its poor charge separation efficiency. Aiming at overcoming this limitation, we investigate here the effects that Cu(II) ion substitution has on the photoelectrocatalytic (PEC) performance of copper tungstate. Optically transparent CuWO4 thin-film photoanodes, prepared via spin coating and containing different amounts of Ni(II) ions, were fully characterized via UV-Vis spectroscopy, XRD and SEM analyses, and their PEC performance was tested via linear sweep voltammetry, incident photon to current efficiency and internal quantum efficiency analyses. From tests performed in the presence of a hole scavenger-containing electrolyte, the charge injection and separation efficiencies of the electrodes were also calculated. Pure-phase crystalline and/or heterojunction materials were obtained with higher PEC performance compared to pure CuWO4, mainly due to a significantly enhanced charge separation efficiency in the bulk of the material.

4.
ACS Appl Energy Mater ; 3(7): 6956-6964, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33829150

RESUMO

The need for stable oxide-based semiconductors with a narrow band gap, able to maximize the exploitation of the visible light portion of the solar spectrum, is a challenging issue for photoelectrocatalytic (PEC) applications. In the present work, CuW1-x Mo x O4 (E g = 2.0 eV for x = 0.5), which exhibits a significantly reduced optical band gap E g compared with isostructural CuWO4 (E g = 2.3 eV), was investigated as a photoactive material for the preparation of photoanodes. CuW0.5Mo0.5O4 electrodes with different thicknesses (80-530 nm), prepared by a simple solution-based process in the form of multilayer films, effectively exhibit visible light photoactivity up to 650 nm (i.e., extended compared with CuWO4 photoanodes prepared by the same way). Furthermore, the systematic investigation on the effects on photoactivity of the CuW0.5Mo0.5O4 layer thickness evidenced that long-wavelength photons can better be exploited by thicker electrodes. PEC measurements in the presence of NaNO2, acting as a suitable hole scavenger ensuring enhanced photocurrent generation compared with that of water oxidation while minimizing dark currents, allowed us to elucidate the role that molybdenum incorporation plays on the charge separation efficiency in the bulk and on the charge injection efficiency at the photoanode surface. The adopted Mo for W substitution increases the visible light photoactivity of copper tungstate toward improved exploitation and storage of visible light into chemical energy via photoelectrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...