Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(20): 8633-8641, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38695060

RESUMO

Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.


Assuntos
Fosfatase Alcalina , Ânions , Complexos de Coordenação , Irídio , Osteossarcoma , Irídio/química , Humanos , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Fosfatase Alcalina/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Ânions/química , Linhagem Celular Tumoral
2.
Eur J Med Chem ; 251: 115249, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893623

RESUMO

The infections caused by Gram-positive bacteria (G+) have seriously endangered public heath due to their high morbidity and mortality. Therefore, it is urgent to develop a multifunctional system for selective recognition, imaging and efficient eradication of G+. Aggregation-induced emission materials have shown great promise for microbial detection and antimicrobial therapy. In this paper, a multifunctional ruthenium (II) polypyridine complex Ru2 with aggregation-induced emission (AIE) characteristic, was developed and used for selective discrimination and efficient extermination of G+ from other bacteria with unique selectivity. The selective G+ recognition benefited from the interaction between lipoteichoic acids (LTA) and Ru2. Accumulation of Ru2 on the G+ membrane turned on its AIE luminescence and allowed specific G+ staining. Meanwhile, Ru2 under light irradiation also possessed robust antibacterial activity for G+in vitro and in vivo antibacterial experiments. To the best of our knowledge, Ru2 is the first Ru-based AIEgen photosensitizer for simultaneous dual applications of G+ detection and treatment, and inspires the development of promising antibacterial agents in the future.


Assuntos
Fármacos Fotossensibilizantes , Rutênio , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Bactérias Gram-Positivas , Bactérias , Antibacterianos/farmacologia
3.
Front Chem ; 10: 906806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747344

RESUMO

The efficient detection of Fe3+ and MnO4 - in a water environment is very important and challenging due to their harmful effects on the health of humanity and environmental systems. Good biocompatibility, sensitivity, selectivity, and superior photophysical properties were important attributes of carbon dot-based CDs sensors for sensing applications. In this work, we synthesized N, P-co-doped carbon dots (N/P CDs) with guanosine 5'-monophosphate (GMP) as a green carbon source, with high fluorescence quantum yield in water (QY, 53.72%). First, the luminescent N/P CDs showed a three-state "on-off-on" fluorescence response upon the sequential addition of Fe3+ and F-, with a low detection limit of 12 nM for Fe3+ and 8.5 nM for F-, respectively. Second, the N/P CDs also exhibited desirable selectivity and sensitivity for toxic MnO4 - detection with the limit of detection of 18.2 nM, through a turn-off mechanism. Moreover, the luminescent N/P CDs successfully monitored the aforementioned ions in environmental water samples and in Escherichia coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...