Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 117(3): 1130-1140, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38579138

RESUMO

Metarhizium anisopliae is an important class of entomopathogenic fungi used for the biocontrol of insects, but its virulence is affected by insect immunity. We identified a novel FK506 binding protein gene that was differentially expressed between control and Metarhizium-treated Locusta migratoria manilensis. We hypothesized that this protein played an important role in Metarhizium infection of L. migratoria and could provide new insights for developing highly efficient entomopathogenic fungi. We, therefore, cloned the specific gene and obtained its purified protein. The gene was then named FKBP52, and its dsRNA (dsFKBP52) was synthesized and used for gene interference. Bioassay results showed that the mortality of L. migratoria treated with dsFKBP52 + Metarhizium was significantly lower than that of other treatments. Furthermore, immune-related genes (MyD88, Dorsal, Cactus, and Defensin) in L. migratoria treated with dsFKBP52 + Metarhizium showed significant upregulation compared to that treated with Metarhizium only. However, the activities of peroxidase (POD), superoxide dismutase (SOD), and calcineurin (CaN) showed fluctuations. These results suggest that the FKBP52 gene may play a crucial role in the innate immunity of L. migratoria. The effect of its silencing indicated that this immunity-related protein might be a potential target for insect biocontrol.


Assuntos
Proteínas de Insetos , Locusta migratoria , Metarhizium , Proteínas de Ligação a Tacrolimo , Animais , Locusta migratoria/genética , Locusta migratoria/imunologia , Metarhizium/fisiologia , Metarhizium/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Controle Biológico de Vetores , Imunidade Inata , Sequência de Aminoácidos
2.
Pestic Biochem Physiol ; 195: 105515, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666582

RESUMO

Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.


Assuntos
Locusta migratoria , Animais , Antifúngicos/farmacologia , Bioensaio , Agentes de Controle Biológico , China , Saccharomyces cerevisiae
3.
Sci Rep ; 13(1): 4048, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899085

RESUMO

FK506 binding proteins (FKBPs) are a highly-conserved group of proteins known to bind to FK506, an immunosuppressive drug. They play different physiological roles, including transcription regulation, protein folding, signal transduction and immunosuppression. A number of FKBP genes have been identified in eukaryotes; however, very little information about these genes has been reported in Locusta migratoria. Here, we identified and characterized 10 FKBP genes from L. migratoria. Phylogenetic analysis and comparison of domain architectures indicated that the LmFKBP family can be divided into two subfamilies and five subclasses. Developmental and tissue expression pattern analysis revealed that all LmFKBPs transcripts, including LmFKBP46, LmFKBP12, LmFKBP47, LmFKBP79, LmFKBP16, LmFKBP24, LmFKBP44b, LmFKBP53, were periodically expressed during different developmental stages and mainly expressed in the fat body, hemolymph, testis, and ovary. In brief, our work depicts a outline but panoramic picture of LmFKBP family in L. migratoria, and provides a solid foundation to further investigate the molecular functions of LmFKBPs.


Assuntos
Locusta migratoria , Proteínas de Ligação a Tacrolimo , Masculino , Animais , Feminino , Proteínas de Ligação a Tacrolimo/genética , Locusta migratoria/genética , Filogenia , Dobramento de Proteína , Tacrolimo
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835451

RESUMO

Metarhizium anisopliae is an entomopathogenic fungus which may enhance plant growth and resistance when acting as an endophyte in host plants. However, little is known about the protein interactions nor their activating mechanisms. Common in fungal extracellular membrane (CFEM) proteins have been identified as plant immune regulators that suppress or activate plant resistance responses. Here, we identified a CFEM domain-containing protein, MaCFEM85, which was mainly localized in the plasma membrane. Yeast two-hybrid (Y2H), glutathione-S-transferase (GST) pull-down, and bimolecular fluorescence complementation assays demonstrated that MaCFEM85 interacted with the extracellular domain of a Medicago sativa (alfalfa) membrane protein, MsWAK16. Gene expression analyses showed that MaCFEM85 and MsWAK16 were significantly upregulated in M. anisopliae and M. sativa, respectively, from 12 to 60 h after co-inoculation. Additional yeast two-hybrid assays and amino acid site-specific mutation indicated that the CFEM domain and 52th cysteine specifically were required for the interaction of MaCFEM85 with MsWAK16. Defense function assays showed that JA was up-regulated, but Botrytis cinerea lesion size and Myzus persicae reproduction were suppressed by transient expression of MaCFEM85 and MsWAK16 in the model host plant Nicotiana benthamiana. Collectively, these results provide novel insights into the molecular mechanisms underlying interactions of M. anisopliae with host plants.


Assuntos
Cisteína , Plantas , Transporte Biológico , Cisteína/metabolismo , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Metarhizium/metabolismo
5.
J Fungi (Basel) ; 8(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35887418

RESUMO

The entomopathogen Metarhizium anisopliae is a facultative rhizosphere or endophytic fungus available for managing pests and improving plant growth. The CFEM (common in fungal extracellular membrane) proteins form a unique group in fungi but are rarely reported in entomopathogens. In this study, we cloned and identified 13 CFEM genes from M. anisopliae (MaCFEMs). Sequence alignment and WebLogo analysis showed that eight cysteines were the most conserved amino acids in their CFEM domain. Phylogenic analysis suggested that these 13 proteins could be divided into 4 clades based on the presence of the transmembrane region and the position of CFEM domain in the whole sequence. Six MaCFEM proteins with a signal peptide and without a transmembrane domain were considered candidate effector proteins. According to Phyre2 analysis, the MaCFEM88 and MaCFEM85 have the most homologous to Csa2 in Candida albicans. Subcellular localization analysis revealed that five effectors were located in the plasma membrane, while MaCFEM88 may locate in both plasma membrane and nucleus in the treated Nicotiana benthamiana. Expression pattern analysis showed that MaCFEM81, 85, 88, and 89 expression level was significantly higher in the sporulation stage compared to other growth stages. Furthermore, the yeast secretion assay showed that six candidate effectors were able to secrete out of the cell. All of the MaCFEMs couldn't affect INF1-induced programmed cell death (PCD), but MaCFEM85 and 88 could trigger a slight hypersensitive response both when applied separately or in combination with INF1 in N. benthamiana leaves. These findings showed that six MaCFEM potential effectors with various structures and subcellular localizations in host cells might be used to illustrate the roles of MaCFEM proteins during M. anisopliae-plant interactions.

6.
Insects ; 12(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670781

RESUMO

Serine protease inhibitors (Serpins) are a broadly distributed superfamily of proteins that exist in organisms with the role of immune responses. Lmserpin1 gene was cloned firstly from Locusta migratoria manilensis and then was detected in all tested stages from eggs to adults and six different tissues through qRT-PCR analysis. The expression was significantly higher in the 3rd instars and within integument. After RNAi treatment, the expression of Lmserpin1 was significantly down-regulated at four different time points. Moreover, it dropped significantly in the fat body and hemolymph at 24 h after treatment. The bioassay results indicated that the mortality of L. migratoria manilensis treated with dsSerpin1 + Metarhizium was significantly higher than the other three treatments. Furthermore, the immune-related genes (PPAE, PPO, and defensin) treated by dsSerpin1 + Metarhizium were significantly down-regulated compared with the Metarhizium treatment, but the activities of phenoloxidase (PO), peroxidase (POD), superoxide dismutase (SOD), glutathione S-transferase (GST), and multifunctional oxidase (MFO) were fluctuating. Our results suggest that Lmserpin1 plays a crucial role in the innate immunity of L. migratoria manilensis. Lmserpin1 probably took part in regulation of melanization and promoted the synthesis of antimicrobial peptides (AMPs).

7.
3 Biotech ; 10(4): 188, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257744

RESUMO

The study aims to determine the timing of application for high efficacy of Metarhizium anisopliae as a biocontrol agent. A field experiment was undertaken with M. anisopliae applied to the soil at five intervals during the peanut crop lifecycle, at seed germination (day 0) through to pod filling period [75 days after sowing (DAS)], and assessed the change of M. anisopliae density by sampling rhizospheric soil, subsequently at regular intervals and testing counts (CFU/g dry soil) through to harvest. The crop was sown into soil with an established white grub population, with larval density determined at harvest when the trial was concluded. Applications at 0, 15 and 30 days in the crop growth cycle, saw M. anisopliae mean propagule counts drop significantly after 15 days before increasing over the following 15-45 days. We observed an elevated mean increase in counts 30-45 days after application at the early flowering stage (30 DAS). Irrespective of application timing, in general, M. anisopliae densities declined to less than the initial 10% in the late stages of peanut development. At harvest, larval densities in all M. anisopliae treatments were significantly less compared to the control, with the highest mortality (72%) in M. anisopliae treatment applied at early flowering (30 DAS). Relationship analysis showed that white grub density was significantly related to peanut yield. A regression of yield on number of damaged pods also supported that treatment at the early flowering caused the highest impact in terms of reducing damage to pods and improving yield. These results suggest that applying M. anisopliae at the early flowering stage optimizes survival of M. anisopliae in the soil profile, meaning greater probability of larvae contacting the pathogen, leading to greater mortality.

8.
3 Biotech ; 10(3): 124, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140376

RESUMO

We detected and compared the mRNA and protein expression levels of immunity-associated and symbiosis-associated genes in peanut (Arachis hypogaea) roots inoculated with entomopathogenic fungus M. anisopliae or the phytopathogenic fungus Fusarium oxysporum, by RT-qPCR and parallel reaction monitoring (PRM). The selected genes were mainly associated with plant-fungus interactions, signal transduction, regulation of cell death, nitrogen or iron metabolism, nutrient acquisition or transport, and compound synthesis based on previous transcriptome analysis. The results showed that the host basal defense responses were significantly inhibited by both M. anisopliae and F. oxysporum, which suggests that both fungi actively suppress the host immunity for successful colonization and infection. However, only F. oxysporum induced a strong host hypersensitivity, which indicates that the host is strongly resisting F. oxysporum but potentially allowing M. anisopliae. Additionally, the genes (SYMRK, CaM, CCaMK, FRI2, ABCC2, F6H1, SCT, NRT24 and LTP1) related to symbiosis and growth were distinctively observed with an up-regulated expression following M. anisopliae treatment, which implies that the host was actively initiating the establishment of symbiosis with the fungus. This study revealed a synergistic relationship between host immunosuppression and the promotion of symbiosis during interactions with M. anisopliae. It suggested that M. anisopliae benefited plant for symbiotic relationship, in addition to controlling herbivorous insects as an entomopathogen.

9.
Genomics ; 112(2): 1821-1828, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669703

RESUMO

FMRFamide-related peptides (FaRPs) are a type of neuropeptide, which participate in a variety of physiological processes in insects. Previous study showed that myosuppressin, being a member of FaRPs, initiated pupal diapause in Mamestra brassicae. We presumed that FaRPs genes might play a critical role in photoperiodic diapause induction of L. migratoria. To verify our hypothesis, flrf, a precursor gene of FaRP from L. migratoria, was initially cloned under long and short photoperiods that encoded by flrf gene identified from central nervous system (CNS). Phylogenetic analysis showed that the protein encoded by L. migratoria flrf gene, clustered together with Nilaparvata lugens (Hemiptera: Delphacidae) with 100% bootstrap support, was basically an FMRFamide precursor homologue. We noticed the availability of -RFamide peptides (GSERNFLRFa, DRNFIRFa) under short photoperiod only, which suggested their functions related to photoperiodic diapause induction. RNAi and quantitative real-time PCR (qRT-PCR) results further confirmed that the flrf gene promoted locust's diapause.


Assuntos
Diapausa de Inseto , Proteínas de Insetos/genética , Locusta migratoria/genética , Oligopeptídeos/genética , Animais , Sistema Nervoso Central/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Insetos/metabolismo , Locusta migratoria/crescimento & desenvolvimento , Oligopeptídeos/metabolismo , Fotoperíodo , Espécies Reativas de Oxigênio/metabolismo
10.
BMC Ecol ; 19(1): 32, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484520

RESUMO

BACKGROUND: The grasshopper Oedaleus asiaticus Bey-Bienko (Acrididae: Oedipodinae) is a dominant and economically important pest that is widely distributed across the Mongolian plateau. This herbivore pest causes major damage to the grassland of the Inner Mongolian steppe in China. The population dynamics of herbivore pests is affected by grassland management practices (e.g., mowing and heavy livestock grazing) that alter plant community structures and stoichiometric characteristics. For example, O. asiaticus outbreak is closely associated with plant preference changes caused by nitrogen loss from heavy livestock grazing. However, the manner by which small-scale variation in vegetation affects grasshopper performance and promotes outbreak is poorly characterized. To address this question, we investigated the relationship between small-scale (1 m2) vegetation variability and measures of O. asiaticus performance associated with plant stoichiometric characteristics. RESULTS: We found that food preferences of O. asiaticus varied significantly, but maintained a specific dietary structure for different plant compositions. Notably, small-scale changes in plant community composition significantly affected grasshopper food preference and body size. Partial least-square modeling indicated that plant proportion and biomass affected grasshopper body size and density. We found that this effect differed between sexes. Specifically, female body mass positively correlated with the proportion of Stipa krylovii grass, whereas male mass positively correlated with the proportion of Artemisia frigida grass. Further analyses indicated that grasshopper performance is closely associated with plant stoichiometric traits that might be responsible for the pest's plague. CONCLUSIONS: This study provides valuable information for managing grasshoppers using rational grassland management practices.


Assuntos
Gafanhotos , Peste , Animais , China , Feminino , Pradaria , Masculino , Plantas , Poaceae
11.
G3 (Bethesda) ; 9(10): 3287-3296, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31405890

RESUMO

Egg diapause in Locusta migratoria L. (Orthoptera: Acridoidea) is believed to be influenced by maternal photoperiod. However, the molecular mechanism regulating the phenomenon of maternal diapause induction is unclear. Here we performed transcriptomic analyses from the central nervous system (CNS) of migratory locusts under long and short photoperiods to identify differentially expressed genes (DEGs) related to diapause induction. There were total of 165750 unigenes from 569491 transcripts, and 610 DEGs were obtained in S_CNS (CNS of short photoperiod treated locusts) vs. L_CNS (CNS of long photoperiod treated locusts). Of these, 360 were up-regulated, 250 were down-regulated, and 84 DEGs were found to be related to FOXO signaling pathways, including citrate cycle/TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation, and PI3K-Akt. The qRT-PCR validation of mRNA expression of 12 randomly selected DEGs showed consistency with transcriptome analysis. Furthermore, the takeout gene thought to be involved in circadian rhythm was cloned and used for RNAi to observe its function in maternal diapause induction. We found that the mRNA level of Lm-takeout was significantly lower in dstakeout treatments as compared to the control under both long and short photoperiods. Similarly, the offspring diapause rate was significantly higher in dstakeout treatment as compared to the control only in short photoperiod. This shows that the Lm-takeout gene might be involved in the inhibition of maternal diapause induction of L. migratoria under short photoperiods. The present study provides extensive data of the CNS transcriptome and particular insights into the molecular mechanisms of maternal effects on egg diapause of L. migratoria As well for the future, the researchers can explore other factors and genes that may promote diapause in insect species.


Assuntos
Sistema Nervoso Central/metabolismo , Diapausa de Inseto/genética , Perfilação da Expressão Gênica , Locusta migratoria/fisiologia , Transcriptoma , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Ontologia Genética , Redes Reguladoras de Genes , Genômica/métodos , Anotação de Sequência Molecular , Fosforilação Oxidativa , Transdução de Sinais
12.
FEBS Lett ; 593(21): 3064-3074, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31323140

RESUMO

Diapause is an important overwintering strategy enabling Locusta migratoria to survive under stressed conditions. We identified a novel dual-specificity kinase gene that is differentially expressed between long and short day-treated L. migratoria. To determine its function on photoperiodic diapause induction, we cloned the specific gene. Interestingly, phylogenetic analysis shows that this dual-specificity kinase is of the mycetozoa protein kinase-like (MPKL) type and may have been transferred horizontally from Mycetozoa to L. migratoria. RNA interference results confirm that MPKL promotes photoperiodic diapause induction of L. migratoria. Furthermore, MPKL significantly inhibits Akt and FOXO (i.e. forkhead box protein O) phosphorylation levels in ovaries, and also enhances reactive oxygen species, superoxide dismutase and catalase activities, whereas peroxidase activity is decreased under both photoperiodic regimes. The findings of the present study offer insight into the molecular mechanism responsible for dual-specificity kinase-induced diapause in insects.


Assuntos
Clonagem Molecular/métodos , Locusta migratoria/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Animais , Diapausa , Evolução Molecular , Feminino , Fatores de Transcrição Forkhead/metabolismo , Transferência Genética Horizontal , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Locusta migratoria/enzimologia , Ovário/metabolismo , Fotoperíodo , Filogenia , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Environ Sci Pollut Res Int ; 26(17): 17797-17808, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31037535

RESUMO

Efficacy of Metarhizium anisopliae strain (IMI330189) and Mad1 protein alone or in combination by feeding method to overcome immune-related enzymes and Toll-like pathway genes was investigated in migratory locust. M. anisopliae (IMI330189) is a potent and entomopathogenic fungal strain could be effectively used against insect pests. Similarly, Mad1 protein adheres to insect cuticle, causing virulence to insects. We confirmed maximum 55% of mortality when M. anisopliae (IMI330189) and Mad1 was applied in combination. Similarly, increased PO activity was observed in locust with combined dose of Mad1 + IMI330189 whereas PO, POD, and SOD activities reduced using Mad1 independently. Four Toll-like signaling pathway genes (MyD88, Cactus, Pelle, and CaN) were investigated from midgut and body of the migratory locust after 72 h of treatments. Subsequently, the expression of MyD88 in the midgut and body significantly decreased with the application of Mad1 and Mad1 + IMI330189. Performance of these treatments was absolutely non-consistent in both parts of insects. Meanwhile, IMI330189 significantly raised the expression of Cactus in both midgut and body. However, the combined treatment (Mad1 + IMI330189) significantly reduced the Cactus expression in both body parts. Pelle expression was significantly increased in the midgut with the application of independent treatment of Mad1 and IMI330189 whereas the combined treatment (Mad1 + IMI330189) suppressed the Pelle expression in midgut. Its expression level was absolutely higher in body with the application of IMI330189 and Mad1 + IMI330189 only. On the other hand, Mad1 significantly increased the expression of CaN in midgut. However, all three treatments significantly affected and suppressed the expression of CaN gene in body of locust. This shows that the applications of M. anisopliae and Mad1 protein significantly affected Toll signaling pathway genes, which ultimately increased level of susceptibility of locust. However, their effect was significantly different in both parts of locust which recommends that the Toll-related genes are conserved in midgut instead of locust body.


Assuntos
Proteínas Fúngicas/metabolismo , Gafanhotos/microbiologia , Metarhizium , Migração Animal , Animais , Genes de Insetos , Gafanhotos/enzimologia , Controle de Insetos/métodos , Insetos , Receptores Toll-Like/genética , Virulência
14.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018489

RESUMO

Photoperiod is one of the most important maternal factors with an impact on the offspring diapause induction of Locusta migratoria. Previous studies have shown that forkhead box protein O (FOXO) plays an important role in regulating insect diapause, but how photoperiod stimulates maternal migratory locusts to regulate the next generation of egg diapause through the FOXO signaling pathway still needs to be addressed. In this study, the transcriptomes of ovaries and fat bodies of adult locusts under a long and short photoperiod were obtained. Among the total of 137 differentially expressed genes (DEGs) in both ovaries and fat bodies, 71 DEGs involved in FOXO signaling pathways might be closely related to diapause induction. 24 key DEGs were selected and their expression profiles were confirmed to be consistent with the transcriptome results using qRT-PCR. RNA interference was then performed to verify the function of retinoic acid induced protein gene (rai1) and foxo. Egg diapause rates were significantly increased by RNAi maternal locusts rai1 gene under short photoperiods. However, the egg diapause rates were significantly decreased by knock down of the foxo gene in the maternal locusts under a short photoperiod. In addition, reactive oxygen species (ROS) and superoxide dismutase (SOD) activities were promoted by RNAi rai1. We identified the candidate genes related to the FOXO pathway, and verified the diapause regulation function of rai1 and foxo under a short photoperiod only. In the future, the researchers can work in the area to explore other factors and genes that can promote diapause induction under a long photoperiod.


Assuntos
Diapausa de Inseto , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/genética , Transcriptoma , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Fotoperíodo , Fatores de Transcrição/genética
15.
Environ Sci Pollut Res Int ; 26(8): 8312-8324, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706274

RESUMO

Protein tyrosine phosphatase (PTPs) and protein tyrosine kinase (PTKs) genes are responsible for the regulation of insect insulin-like pathway (ILP), cells growth, metabolism initiation, gene transcription and observing immune response. Signal transduction in insect cell is also associated with PTPs and PTKs. The grasshopper (Oedaleus asiaticus) 'Bey-Bienko' were treated with dsRNA of protein tyrosine non-receptor type 4 (PTPN4) and protein tyrosine kinase 5 (PTK5) along with control (water). Applying dsPTK5 treatments in 5th instar of Oedaleus asiaticus, significant reduction was recorded in body dry mass, growth rate and overall performance except survival rate. Whereas with PTPN4, no such significant impact on all of these growth parameters was recorded. Expression of genes in ILP 5th instar of Oedaleus asiaticus by the application of dsPTPN4 and dsPTK5 revealed that PTK, INSR (insulin receptor), IRS (insulin receptor substrate), PI3K (phosphoinositide 3-kinase), PDK (3-phosphoinositide-dependent protein kinase), Akt (protein kinase B) and FOXO (forkhead transcription factor) significantly expressed with downregulation except PTPN4, which remained non-significant. On the other hand, the phosphorylation level of ILP four proteins in O. asiaticus with the treatment of dsPTPN4 and dsPTK5 significantly affected P-IRS and P-FOXO, while P-INSR and P-AKT remained stable at the probability level of 5%. This indicated that the stress response in the O. asiaticus insulin-like signalling pathway (ILP) reduced. Regarding association of protective enzymatic activities, ROS (relative oxygen species), CAT (catalase) and PO (phenol oxidase) increased significantly with exposure to dsPTK5 as compared to dsPTPN4 and control, while exposure of 5th instar of O. asiaticus to dsPTPN4 treatment slightly raised CAT and PO activities with but significant contribution. No such significant effect on MFO and POD was seen using dsPTPN4 and dsPTK5. This showed that in the ILP of O. asiaticus, PTK5 was detrimental to growth, body mass and overall performance, which ultimately benefited insect detoxification with high-energy cost.


Assuntos
Gafanhotos/crescimento & desenvolvimento , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gafanhotos/genética , Gafanhotos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 4/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais
16.
Front Physiol ; 8: 770, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066978

RESUMO

While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP) remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture (ETA) of grasshopper phenotypic traits (ETAGPTs). ETAGPTs revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP), negative elongation factor A (NELFA), and lactase-phlorizin hydrolase (LCT) were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and highlight the significance of ecological management practice on grassland conservation.

17.
Sci Rep ; 7(1): 8655, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819233

RESUMO

We studied the role of plant primary and secondary metabolites in mediating plant-insect interactions by conducting a no-choice single-plant species field experiment to compare the suitability, enzyme activities, and gene expression of Oedaleus asiaticus grasshoppers feeding on four host and non-host plants with different chemical traits. O. asiaticus growth showed a positive relationship to food nutrition content and a negative relationship to secondary compounds content. Grasshopper amylase, chymotrypsin, and lipase activities were positively related to food starch, crude protein, and lipid content, respectively. Activity of cytochrome P450s, glutathione-S-transferase, and carboxylesterase were positively related to levels of secondary plant compounds. Gene expression of UDP-glucuronosyltransferase 2C1, cytochrome P450 6K1 were also positively related to secondary compounds content in the diet. Grasshoppers feeding on Artemisia frigida, a species with low nutrient content and a high level of secondary compounds, had reduced growth and digestive enzyme activity. They also had higher detoxification enzyme activity and gene expression compared to grasshoppers feeding on the grasses Cleistogenes squarrosa, Leymus chinensis, or Stipa krylovii. These results illustrated Oedaleus asiaticus adaptive responses to diet stress resulting from toxic chemicals, and support the hypothesis that nutritious food benefits insect growth, but plant secondary compounds are detrimental for insect growth.


Assuntos
Ração Animal , Expressão Gênica , Gafanhotos/fisiologia , Plantas Comestíveis , Estresse Fisiológico , Animais , Biomarcadores , Compostos Fitoquímicos/química , Plantas Comestíveis/química , Característica Quantitativa Herdável
18.
J Econ Entomol ; 110(4): 1831-1840, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525595

RESUMO

Oedaleus asiaticus B. Bienko is a persistent pest occurring in north Asian grasslands. We found that O. asiaticus feeding on Stipa krylovii Roshev. had higher approximate digestibility (AD), efficiency of conversion of ingested food (ECI), and efficiency of conversion of digested food (ECD), compared with cohorts feeding on Leymus chinensis (Trin.) Tzvel, Artemisia frigida Willd., or Cleistogenes squarrosa (Trin.) Keng. Although this indicated high food utilization efficiency for S. krylovii, the physiological processes and molecular mechanisms underlying these biological observations are not well understood. Transcriptome analysis was used to examine how gene expression levels in O. asiaticus gut are altered by feeding on the four plant species. Nymphs (fifth-instar female) that fed on S. krylovii had the largest variation in gene expression profiles, with a total of 88 genes significantly upregulated compared with those feeding on the other three plants, mainly including nutrition digestive genes of protein, carbohydrate, and lipid digestion. GO and KEGG enrichment also showed that feeding S. krylovii could upregulate the nutrition digestion-related molecular function, biological process, and pathways. These changes in transcripts levels indicate that the physiological processes of activating nutrition digestive enzymes and metabolism pathways can well explain the high food utilization of S. krylovii by O. asiaticus.


Assuntos
Digestão , Metabolismo Energético , Trato Gastrointestinal/metabolismo , Gafanhotos/fisiologia , Transcriptoma , Fenômenos Fisiológicos da Nutrição Animal , Animais , China , Feminino , Gafanhotos/genética , Gafanhotos/crescimento & desenvolvimento , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
19.
Sci Rep ; 7(1): 964, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424511

RESUMO

Entomopathogenic fungus Metarhizium anisopliae obtain survival benefit meanwhile promote the nutrient absorption of root as an endophyte. However, little is known concerning molecular mechanisms in the process. We performed the transcriptome sequencing of A. hypogaea roots inoculated M. anisopliae and pathogenic Fusarium axysporum, respectively. There were 81323 unigenes from 132023 transcripts. Total 203 differentially expressed genes (DEGs) respond to the two fungi, including specific 76 and 34 DEGs distributed respectively in M. anisopliae and F. axysporum treatment. KEGG pathway enrichment for DEGs showed the two top2 were signal transductions of plant-pathogen interaction and plant hormone. By qRT-PCR, the mRNA level of 26 genes involved in plant-fungus interaction confirmed the reliability of the RNA-Seq data. The expression pattern of the key DEGs on jasmonic acid (JA) or salicylic acid (SA) signaling pathway presented regulating consistency with JA or SA concentration detected by HPLC-MS. Those significantly stronger down-regulated DEGs by M. anisopliae thanby F. axysporum linking to hypersensitive response and negative regulation of defense, and those specific up-regulated genes in M. anisopliae treatment may predict that the less immunity is conducive to symbiosis F. axysporum may trigger JA-mediated defense regulated by ERF branch of JA signaling pathway, whereas M. anisopliae does not.


Assuntos
Arachis/genética , Metarhizium/patogenicidade , Micorrizas/genética , Transcriptoma , Arachis/metabolismo , Arachis/microbiologia , Genes de Plantas , Micorrizas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...