Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 33(5): 3018-24, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623127

RESUMO

Here we present a new method for providing nanostructured drug-loaded polymer films which enable control of film surface morphology and delivery of therapeutic agents. Silicon wafers were employed as models for implanted biomaterials and poly(lactic-co-glycolic acid) (PLGA) nanoparticles were assembled onto the silicon surface by electrostatic interaction. Monolayers of the PLGA particles were deposited onto the silicon surface upon incubation in an aqueous particle suspension. Particle density and surface coverage of the silicon wafers were varied by altering particle concentration, incubation time in nanoparticle suspension and ionic strength of the suspension. Dye loaded nanoparticles were prepared and assembled to silicon surface to form nanoparticle films. Fluorescence intensity measurements showed diffusion-controlled release of the dye over two weeks and atomic force microscopy (AFM) analysis revealed that these particles remained attached to the surface during the incubation time. This work suggests that coating implants with PLGA nanoparticles is a versatile technique which allows drug release from the implant surface and modulation of surface morphology.


Assuntos
Materiais Revestidos Biocompatíveis , Equipamentos e Provisões , Ácido Láctico/química , Nanoestruturas , Ácido Poliglicólico/química , Corantes Fluorescentes , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...