Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 27(10): 2127-34, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17872458

RESUMO

OBJECTIVE: We demonstrated previously that mouse embryonic stem (ES) cell-derived vascular endothelial growth factor receptor-2 (VEGF-R2)-positive cells can differentiate into both vascular endothelial cells and mural cells. This time, we investigated kinetics of differentiation of human ES cells to vascular cells and examined their potential as a source for vascular regeneration. METHODS AND RESULTS: Unlike mouse ES cells, undifferentiated human ES cells already expressed VEGF-R2, but after differentiation, a VEGF-R2-positive but tumor rejection antigen 1-60 (TRA1-60)-negative population emerged. These VEGF-R2-positive but tumor rejection antigen 1-60-negative cells were also positive for platelet-derived growth factor receptor alpha and beta chains and could be effectively differentiated into both VE-cadherin+ endothelial cell and alpha-smooth muscle actin+ mural cell. VE-cadherin+ cells, which were also CD34+ and VEGF-R2+ and thought to be endothelial cells in the early differentiation stage, could be expanded while maintaining their maturity. Their transplantation to the hindlimb ischemia model of immunodeficient mice contributed to the construction of new blood vessels and improved blood flow. CONCLUSIONS: We could identify the differentiation process from human ES cells to vascular cell components and demonstrate that expansion and transplantation of vascular cells at the appropriate differentiation stage may constitute a novel strategy for vascular regenerative medicine.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Miócitos de Músculo Liso/metabolismo , Regeneração , Actinas/metabolismo , Proteínas Angiogênicas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Caderinas/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Células-Tronco Embrionárias/imunologia , Células Endoteliais/imunologia , Células Endoteliais/transplante , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/cirurgia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/transplante , Neovascularização Fisiológica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fluxo Sanguíneo Regional , Transplante de Células-Tronco , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Circulation ; 107(16): 2085-8, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12707232

RESUMO

BACKGROUND: We demonstrated that vascular endothelial growth factor receptor 2 (VEGF-R2)-positive cells derived from mouse embryonic stem (ES) cells can differentiate into both endothelial cells and mural cells to suffice as vascular progenitor cells (VPCs). Here we examined whether VPCs occur in primate ES cells and investigated the differences in VPC differentiation kinetics between primate and mouse ES cells. METHODS AND RESULTS: In contrast to mouse ES cells, undifferentiated monkey ES cells expressed VEGF-R2. By culturing these undifferentiated ES cells for 4 days on OP9 feeder layer, VEGF-R2 expression disappeared, and then reappeared after 8 days of differentiation. We then isolated these VEGF-R2-positive and vascular endothelial cadherin (VEcadherin)-negative cells by flow cytometry sorting. Additional 5-day reculture of these VEGF-R2+ VEcadherin- cells on OP9 feeder layer resulted in the appearance of platelet endothelial cell adhesion molecule-1 (PECAM1)-positive, VEcadherin-positive, endothelial nitric oxide synthase (eNOS)-positive endothelial cells. On a collagen IV-coated dish in the presence of serum, these cells differentiated into smooth muscle actin (SMA)-positive and calponin-positive mural cells (pericytes or vascular smooth muscle cells). Addition of 50 ng/mL VEGF to the culture on a collagen IV-coated dish resulted in the appearance of PECAM1+ cells surrounded by SMA+ cells. In addition, these differentiated VEGF-R2+ cells can form tube-like structures in a 3-dimensional culture. CONCLUSIONS: Our findings indicate that differentiation kinetics of VPCs derived from primate and mouse ES cells were different. Differentiated VEGF-R2+ VEcadherin- cells can act as VPCs in primates. To seek the clinical potential of VPCs for vascular regeneration, investigations of primate ES cells are indispensable.


Assuntos
Embrião de Mamíferos/citologia , Endotélio Vascular/citologia , Músculo Liso Vascular/citologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Cinética , Macaca fascicularis , Camundongos , Especificidade da Espécie , Células-Tronco/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...