Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 8: 1305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28747909

RESUMO

The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.

2.
J Am Chem Soc ; 135(18): 6921-9, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23578101

RESUMO

While a general model of H2 activation has been proposed for [FeFe]-hydrogenases, the structural and biophysical properties of the intermediates of the H-cluster catalytic site have not yet been discretely defined. Electron paramagnetic resonance (EPR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to characterize the H-cluster catalytic site, a [4Fe-4S]H subcluster linked by a cysteine thiolate to an organometallic diiron subsite with CO, CN, and dithiolate ligands, in [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii (CrHydA1). Oxidized CrHydA1 displayed a rhombic 2.1 EPR signal (g = 2.100, 2.039, 1.997) and an FTIR spectrum previously assigned to the oxidized H-cluster (Hox). Reduction of the Hox sample with 100% H2 or sodium dithionite (NaDT) nearly eliminated the 2.1 signal, which coincided with appearance of a broad 2.3-2.07 signal (g = 2.3-2.07, 1.863) and/or a rhombic 2.08 signal (g = 2.077, 1.935, 1.880). Both signals displayed relaxation properties similar to those of [4Fe-4S] clusters and are consistent with an S = 1/2 H-cluster containing a [4Fe-4S]H(+) subcluster. These EPR signals were correlated with differences in the CO and CN ligand modes in the FTIR spectra of H2- and NaDT-reduced samples compared with Hox. The results indicate that reduction of [4Fe-4S]H from the 2+ state to the 1+ state occurs during both catalytic H2 activation and proton reduction and is accompanied by structural rearrangements of the diiron subsite CO/CN ligand field. Changes in the [4Fe-4S]H oxidation state occur in electron exchange with the diiron subsite during catalysis and mediate electron transfer with either external carriers or accessory FeS clusters.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Mol Cell Biol ; 33(3): 605-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23184661

RESUMO

The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Regulação Fúngica da Expressão Gênica , Humanos , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Fosforilação , Mutação Puntual , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
4.
Epigenetics Chromatin ; 5(1): 5, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541333

RESUMO

BACKGROUND: The protein anti-silencing function 1 (Asf1) chaperones histones H3/H4 for assembly into nucleosomes every cell cycle as well as during DNA transcription and repair. Asf1 interacts directly with H4 through the C-terminal tail of H4, which itself interacts with the docking domain of H2A in the nucleosome. The structure of this region of the H4 C-terminus differs greatly in these two contexts. RESULTS: To investigate the functional consequence of this structural change in histone H4, we restricted the available conformations of the H4 C-terminus and analyzed its effect in vitro and in vivo in Saccharomyces cerevisiae. One such mutation, H4 G94P, had modest effects on the interaction between H4 and Asf1. However, in yeast, flexibility of the C-terminal tail of H4 has essential functions that extend beyond chromatin assembly and disassembly. The H4 G94P mutation resulted in severely sick yeast, although nucleosomes still formed in vivo albeit yielding diffuse micrococcal nuclease ladders. In vitro, H4G4P had modest effects on nucleosome stability, dramatically reduced histone octamer stability, and altered nucleosome sliding ability. CONCLUSIONS: The functional consequences of altering the conformational flexibility in the C-terminal tail of H4 are severe. Interestingly, despite the detrimental effects of the histone H4 G94P mutant on viability, nucleosome formation was not markedly affected in vivo. However, histone octamer stability and nucleosome stability as well as nucleosome sliding ability were altered in vitro. These studies highlight an important role for correct interactions of the histone H4 C-terminal tail within the histone octamer and suggest that maintenance of a stable histone octamer in vivo is an essential feature of chromatin dynamics.

5.
J Biol Chem ; 284(51): 35485-94, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19858201

RESUMO

The role of Lys-63 ubiquitin chains in targeting proteins for proteasomal degradation is still obscure. We systematically compared proteasomal processing of Lys-63 ubiquitin chains with that of the canonical proteolytic signal, Lys-48 ubiquitin chains. Quantitative mass spectrometric analysis of ubiquitin chains in HeLa cells determines that the levels of Lys-63 ubiquitin chains are insensitive to short-time proteasome inhibition. Also, the Lys-48/Lys-63 ratio in the 26 S proteasome-bound fraction is 1.7-fold more than that in the cell lysates, likely because some cellular Lys-63 ubiquitin conjugates are sequestered by Lys-63 chain-specific binding proteins. In vitro, Lys-48 and Lys-63 ubiquitin chains bind the 26 S proteasome comparably, whereas Lys-63 chains are deubiquitinated 6-fold faster than Lys-48 chains. Also, Lys-63 tetraubiquitin-conjugated UbcH10 is rapidly deubiquitinated into the monoubiquitinated form, whereas Lys-48 tetraubiquitin targets UbcH10 for degradation. Furthermore, we found that both the ubiquitin aldehyde- and 1,10-phenanthroline-sensitive deubiquitinating activities of the 26 S proteasome contribute to Lys-48- and Lys-63-linkage deubiquitination, albeit the inhibitory extents are different. Together, our findings suggest that compared with Lys-48 chains, cellular Lys-63 chains have less proteasomal accessibility, and proteasome-bound Lys-63 chains are more rapidly deubiquitinated, which could cause inefficient degradation of Lys-63 conjugates.


Assuntos
Lisina/química , Complexo de Endopeptidases do Proteassoma/química , Ubiquitina/química , Ubiquitinação/fisiologia , Animais , Bovinos , Células HeLa , Humanos , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
6.
Mol Cell Biol ; 27(24): 8522-32, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17923700

RESUMO

In eukaryotic cells, cohesion between sister chromatids allows chromosomes to biorient on the metaphase plate and holds them together until they separate into daughter cells during mitosis. Cohesion is mediated by the cohesin protein complex. Although the association of this complex with particular regions of the genome is highly reproducible, it is unclear what distinguishes a chromosomal region for cohesin association. Since one of the primary locations of cohesin is intergenic regions between converging transcription units, we explored the relationship between transcription and cohesin localization. Chromatin immunoprecipitation followed by hybridization to a microarray (ChIP chip) indicated that transcript elongation into cohesin association sites results in the local disassociation of cohesin. Once transcription is halted, cohesin can reassociate with its original sites, independent of DNA replication and the cohesin loading factor Scc2, although cohesin association with chromosomes in G2/M is not functional for cohesion. A computer program was developed to systematically identify differences between two ChIP chip data sets. Our results are consistent with a model for cohesin association in which (i) a portion of cohesin can be dynamically loaded and unloaded to accommodate transcription and (ii) the cohesin complex has preferences for features of chromatin that are a reflection of the local transcriptional status. Taken together, our results suggest that cohesion may be degraded by transcription.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Aminoácidos/deficiência , Fase G2/efeitos dos fármacos , Galactose/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Mitose/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...