Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Endocrinol ; 24(7): 1434-40, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20501641

RESUMO

The aim of this study was to investigate the molecular mechanisms by which AMP-kinase (AMPK) activation inhibits basal and insulin-stimulated glucose uptake in primary adipocytes. Rat epididymal adipocytes were exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 1 h. Subsequently, basal and insulin-stimulated glucose uptake and the phosphorylation of AMPK, acetyl-CoA carboxylase, Akt, and the Akt substrate of 160 kDa (AS160/TBC1D4) were determined. In order to investigate whether these effects of AICAR were mediated by AMPK activation, these parameters were also assessed in adipocytes either expressing LacZ (control) or a kinase-dead AMPKalpha1 mutant. AICAR increased AMPK activation without affecting basal and insulin-stimulated Akt1/2 phosphorylation on Thr(308) and Ser(473) residues. However, AMPK activation suppressed the phosphorylation of AS160/TBC1D4 and its interaction with the 14-3-3 signal transduction-regulatory protein, which was accompanied by significant reductions in plasma membrane glucose transporter 4 content and glucose uptake under basal and insulin-stimulated conditions. Phosphorylation of Akt substrates glycogen synthase kinase 3alpha and -beta were unaltered by AICAR, indicating that the AMPK-regulatory effects were specific to the AS160/TBC1D4 signaling pathway. Expression of the kinase-dead AMPKalpha1 mutant fully prevented the suppression of AS160/TBC1D4 phosphorylation, plasma membrane glucose transporter 4 content, and the inhibitory effect of AICAR-induced AMPK activation on basal and insulin-stimulated glucose uptake. This study is the first to provide evidence that disruption of AMPKalpha1 signaling prevents the suppressive effects of AMPK activation on AS160/TBC1D4 phosphorylation and glucose uptake, indicating that insulin-signaling steps that are common to white adipose tissue and skeletal muscle regulation of glucose uptake are distinctly affected by AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Proteínas Ativadoras de GTPase/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Immunoblotting , Imunoprecipitação , Masculino , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...