Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 774: 145195, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609850

RESUMO

Engineered nanoparticles including ZnO nanoparticles (nZnO) are important emerging pollutants in aquatic ecosystems creating potential risks to coastal ecosystems and associated biota. The toxicity of nanoparticles and its interaction with the important environmental stressors (such as salinity variation) are not well understood in coastal organisms and require further investigation. Here, we examined the interactive effects of 100 µg l-1 nZnO or dissolved Zn (as a positive control for Zn2+ release) and salinity (normal 15, low 5, and fluctuating 5-15) on bioenergetics and intermediate metabolite homeostasis of a keystone marine bivalve, the blue mussel Mytilus edulis from the Baltic Sea. nZnO exposures did not lead to strong disturbances in energy or intermediate metabolite homeostasis regardless of the salinity regime. Dissolved Zn exposures suppressed the mitochondrial ATP synthesis capacity and coupling as well as anaerobic metabolism and modified the free amino acid profiles in the mussels indicating that dissolved Zn is metabolically more damaging than nZnO. The environmental salinity regime strongly affected metabolic homeostasis and altered physiological and biochemical responses to nZnO or dissolved Zn in the mussels. Exposure to low (5) or fluctuating (5-15) salinity affected the physiological condition, energy metabolism and homeostasis, as well as amino acid metabolism in M. edulis. Generally, fluctuating salinity (5-15) appeared bioenergetically less stressful than constantly hypoosmotic stress (salinity 5) in M. edulis indicating that even short (24 h) periods of recovery might be sufficient to restore the metabolic homeostasis in this euryhaline species. Notably, the biological effects of nZnO and dissolved Zn became progressively less detectable as the salinity stress increased. These findings demonstrate that habitat salinity must be considered in the biomarker-based assessment of the toxic effects of nanopollutants on coastal organisms.


Assuntos
Mytilus edulis , Mytilus , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Ecossistema , Metabolismo Energético , Homeostase , Salinidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-32758703

RESUMO

Benthic organisms are subject to prolonged seasonal food limitation in the temperate shallow coastal waters that can cause energetic stress and affect their performance. Sediment-dwelling marine bivalves cope with prolonged food limitation by adjusting different physiological processes that might cause trade-offs between maintenance and other fitness-related functions. We investigated the effects of prolonged (42 days) food deprivation on bioenergetics, burrowing performance and amino acid profiles in a common marine bivalve, Mya arenaria collected in winter and spring. Food limitation of >15 days decreased respiration of the clams by 80%. Total tissue energy content was higher in spring-collected clams (reflecting higher lipid content) than in their winter counterparts. Prolonged food deprivation decreased the tissue energy content of clams, especially in winter. The levels of free amino acids transiently increased during the early phase of food deprivation possibly reflecting suppression of the protein synthesis or enhanced protein degradation. The levels of amino acids considered essential for bivalves were more tightly conserved than those of non-essential amino acids during starvation. The burrowing capacity of clams was negatively affected by food deprivation so that the time required for a burial cycle increased by 35-50% after 22-42 days of starvation. During the early phase of starvation, clams preferentially used lipids as fuel for burrowing, whereas carbohydrates were used at the later phase. These findings suggest that although M. arenaria can withstand prolonged food deprivation by lowering their basal maintenance costs and switching their fuel usage, their ecological functions (e.g. bioturbation and the energy transferable to the next trophic level) could be negatively impacted by starvation.


Assuntos
Metabolismo Energético , Privação de Alimentos , Mya/metabolismo , Animais , Comportamento Animal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...