Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Anim Biosci ; 11: 77-91, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36315650

RESUMO

For nearly a century, evolutionary biologists have observed chromosomes that cause lethality when made homozygous persisting at surprisingly high frequencies (>25%) in natural populations of many species. The evolutionary forces responsible for the maintenance of such detrimental mutations have been heavily debated-are some lethal mutations under balancing selection? We suggest that mutation-selection balance alone cannot explain lethal variation in nature and the possibility that other forces play a role. We review the potential that linked selection in particular may drive maintenance of lethal alleles through associative overdominance or linkage to beneficial mutations or by reducing effective population size. Over the past five decades, investigation into this mystery has tapered. During this time, key scientific advances have provided the ability to collect more accurate data and analyze them in new ways, making the underlying genetic bases and evolutionary forces of lethal alleles timely for study once more.


Assuntos
Cromossomos , Variação Genética , Animais , Heterozigoto , Mutação , Evolução Biológica , Seleção Genética
2.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103705

RESUMO

Accurate estimates of the rate of recombination are key to understanding a host of evolutionary processes as well as the evolution of the recombination rate itself. Model-based population genetic methods that infer recombination rates from patterns of linkage disequilibrium in the genome have become a popular method to estimate rates of recombination. However, these linkage disequilibrium-based methods make a variety of simplifying assumptions about the populations of interest that are often not met in natural populations. One such assumption is the absence of gene flow from other populations. Here, we use forward-time population genetic simulations of isolation-with-migration scenarios to explore how gene flow affects the accuracy of linkage disequilibrium-based estimators of recombination rate. We find that moderate levels of gene flow can result in either the overestimation or underestimation of recombination rates by up to 20-50% depending on the timing of divergence. We also find that these biases can affect the detection of interpopulation differences in recombination rate, causing both false positives and false negatives depending on the scenario. We discuss future possibilities for mitigating these biases and recommend that investigators exercise caution and confirm that their study populations meet assumptions before deploying these methods.


Assuntos
Fluxo Gênico , Recombinação Genética , Desequilíbrio de Ligação , Genética Populacional , Viés , Modelos Genéticos
3.
Genes (Basel) ; 12(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828309

RESUMO

Behavioral isolation is considered to be the primary mode of species isolation, and the lack of identification of individual genes for behavioral isolation has hindered our ability to address fundamental questions about the process of speciation. One of the major questions that remains about behavioral isolation is whether the genetic basis of isolation between species also varies within a species. Indeed, the extent to which genes for isolation may vary across a population is rarely explored. Here, we bypass the problem of individual gene identification by addressing this question using a quantitative genetic comparison. Using strains from eight different populations of Drosophila simulans, we genetically mapped the genomic regions contributing to behavioral isolation from their closely related sibling species, Drosophila mauritiana. We found extensive variation in the size of contribution of different genomic regions to behavioral isolation among the different strains, in the location of regions contributing to isolation, and in the ability to redetect loci when retesting the same strain.


Assuntos
Drosophila/genética , Especiação Genética , Isolamento Social , Animais , Comportamento Animal/fisiologia , Drosophila/fisiologia , Feminino , Genes de Insetos , Variação Genética , Masculino , Locos de Características Quantitativas , Comportamento Sexual Animal/fisiologia , Especificidade da Espécie
4.
Evolution ; 75(7): 1820-1834, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34041743

RESUMO

By shaping meiotic recombination, chromosomal inversions can influence genetic exchange between hybridizing species. Despite the recognized importance of inversions in evolutionary processes such as divergence and speciation, teasing apart the effects of inversions over time remains challenging. For example, are their effects on sequence divergence primarily generated through creating blocks of linkage disequilibrium prespeciation or through preventing gene flux after speciation? We provide a comprehensive look into the influence of inversions on gene flow throughout the evolutionary history of a classic system: Drosophila pseudoobscura and Drosophila persimilis. We use extensive whole-genome sequence data to report patterns of introgression and divergence with respect to chromosomal arrangements. Overall, we find evidence that inversions have contributed to divergence patterns between D. pseudoobscura and D. persimilis over three distinct timescales: (1) segregation of ancestral polymorphism early in the speciation process, (2) gene flow after the split of D. pseudoobscura and D. persimilis, but prior to the split of D. pseudoobscura subspecies, and (3) recent gene flow between sympatric D. pseudoobscura and D. persimilis, after the split of D. pseudoobscura subspecies. We discuss these results in terms of our understanding of evolution in this classic system and provide cautions for interpreting divergence measures in other systems.


Assuntos
Inversão Cromossômica , Drosophila , Animais , Cromossomos , Drosophila/genética , Fluxo Gênico , Genoma
5.
Evolution ; 75(5): 978-988, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870499

RESUMO

If there are no constraints on the process of speciation, then the number of species might be expected to match the number of available niches and this number might be indefinitely large. One possible constraint is the opportunity for allopatric divergence. In 1981, Felsenstein used a simple and elegant model to ask if there might also be genetic constraints. He showed that progress towards speciation could be described by the build-up of linkage disequilibrium among divergently selected loci and between these loci and those contributing to other forms of reproductive isolation. Therefore, speciation is opposed by recombination, because it tends to break down linkage disequilibria. Felsenstein then introduced a crucial distinction between "two-allele" models, which are subject to this effect, and "one-allele" models, which are free from the recombination constraint. These fundamentally important insights have been the foundation for both empirical and theoretical studies of speciation ever since.


Assuntos
Especiação Genética , Desequilíbrio de Ligação , Animais , Evolução Biológica , Modelos Teóricos , Recombinação Genética , Isolamento Reprodutivo
6.
Fly (Austin) ; 15(1): 38-44, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33319644

RESUMO

Drosophila pseudoobscura is a classic model system for the study of evolutionary genetics and genomics. Given this long-standing interest, many genome sequences have accumulated for D. pseudoobscura and closely related species D. persimilis, D. miranda, and D. lowei. To facilitate the exploration of genetic variation within species and comparative genomics across species, we present PseudoBase, a database that couples extensive publicly available genomic data with simple visualization and query tools via an intuitive graphical interface, amenable for use in both research and educational settings. All genetic variation (SNPs and indels) within the database is derived from the same workflow, so variants are easily comparable across data sets. Features include an embedded JBrowse interface, ability to pull out alignments of individual genes/regions, and batch access for gene lists. Here, we introduce PseudoBase, and we demonstrate how this resource facilitates use of extensive genomic data from flies of the Drosophila pseudoobscura subgroup.


Assuntos
Bases de Dados Genéticas , Drosophila/classificação , Drosophila/genética , Genômica , Animais , Genoma , Especificidade da Espécie
7.
Curr Biol ; 30(8): 1517-1528.e6, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32275873

RESUMO

While recombination is widely recognized to be a key modulator of numerous evolutionary phenomena, we have a poor understanding of how recombination rate itself varies and evolves within a species. Here, we performed a comprehensive study of recombination rate (rate of meiotic crossing over) in two natural populations of Drosophila pseudoobscura from Utah and Arizona, USA. We used an amplicon sequencing approach to obtain high-quality genotypes in approximately 8,000 individual backcrossed offspring (17 mapping populations with roughly 530 individuals each), for which we then quantified crossovers. Interestingly, variation in recombination rate within and between populations largely manifested as differences in genome-wide recombination rate rather than remodeling of the local recombination landscape. Comparing populations, we discovered individuals from the Utah population displayed on average 8% higher crossover rates than the Arizona population, a statistically significant difference. Using a QST-FST analysis, we found that this difference in crossover rate was dramatically higher than expected under neutrality, indicating that this difference may have been driven by natural selection. Finally, using a combination of short- and long-read whole-genome sequencing, we found no significant association between crossover rate and structural variation at the 200-400 kb scale. Our results demonstrate that (1) there is abundant variation in genome-wide crossover rate in natural populations, (2) at the 200-400 kb scale, recombination rate appears to vary largely genome-wide, rather than in specific intervals, and (3) interpopulation differences in recombination rate may be the result of local adaptation.


Assuntos
Troca Genética , Drosophila/genética , Genoma de Inseto , Seleção Genética , Animais , Arizona , Feminino , Masculino , Utah
8.
Mol Ecol ; 28(6): 1302-1315, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30387889

RESUMO

Chromosomal inversions shape recombination landscapes, and species differing by inversions may exhibit reduced gene flow in these regions of the genome. Though single crossovers within inversions are not usually recovered from inversion heterozygotes, the recombination barrier imposed by inversions is nuanced by noncrossover gene conversion. Here, we provide a genomewide empirical analysis of gene conversion rates both within species and in species hybrids. We estimate that gene conversion occurs at a rate of 1 × 10-5 to 2.5 × 10-5 converted sites per bp per generation in experimental crosses within Drosophila pseudoobscura and between D. pseudoobscura and its naturally hybridizing sister species D. persimilis. This analysis is the first direct empirical assessment of gene conversion rates within inversions of a species hybrid. Our data show that gene conversion rates in interspecies hybrids are at least as high as within-species estimates of gene conversion rates, and gene conversion occurs regularly within and around inverted regions of species hybrids, even near inversion breakpoints. We also found that several gene conversion events appeared to be mitotic rather than meiotic in origin. Finally, we observed that gene conversion rates are higher in regions of lower local sequence divergence, yet our observed gene conversion rates in more divergent inverted regions were at least as high as in less divergent collinear regions. Given our observed high rates of gene conversion despite the sequence differentiation between species, especially in inverted regions, gene conversion has the potential to reduce the efficacy of inversions as barriers to recombination over evolutionary time.


Assuntos
Inversão Cromossômica/genética , Evolução Molecular , Conversão Gênica/genética , Recombinação Genética , Animais , Drosophila/genética , Feminino , Genoma de Inseto/genética , Heterozigoto , Masculino , Cromossomo X/genética
9.
Trends Genet ; 34(2): 87-89, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29290402

RESUMO

Across species, many individuals carry one or more recessive lethal alleles, posing an evolutionary conundrum for their persistence. Using a population genomic approach, Amorim et al. studied the abundance of lethal disease-causing mutations in humans and found that, while appearing more common than expected, most may nonetheless persist at frequencies predicted by mutation-selection balance.


Assuntos
Genes Letais , Mutação , Alelos , Genes Recessivos , Humanos
10.
Trends Genet ; 33(5): 364-374, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28359582

RESUMO

Rates of meiotic recombination are widely variable both within and among species. However, the functional significance of this variation remains largely unknown. Is the observed within-species variation in recombination rate adaptive? Recent work has revealed new insight into the scale and scope of population-level variation in recombination rate. These data indicate that the magnitude of within-population variation in recombination is similar among taxa. The apparent similarity of the variance in recombination rate among individuals between distantly related species suggests that the relative costs and benefits of recombination that establish the upper and lower bounds may be similar across species. Here we review the current data on intraspecific variation in recombination rate and discuss the molecular and evolutionary costs and benefits of recombination frequency. We place this variation in the context of adaptation and highlight the need for more empirical studies focused on the adaptive value of variation in recombination rate.


Assuntos
Evolução Molecular , Meiose/genética , Recombinação Genética , Animais , Variação Genética , Humanos
11.
Ecol Evol ; 7(7): 2268-2272, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28405290

RESUMO

While females often reject courtship attempts by heterospecific males, reproductive interference by harassment from such males can nonetheless occur, potentially reducing female fitness. Such effects may be profound following a range expansion, when males from a new species may suddenly encounter (and perhaps even become abundant relative to) females of related native species. Drosophila subobscura recently invaded North America and may impact native species through reproductive interference and other processes. We test for the potential for reproductive interference by D. subobscura males on D. persimilis females in the laboratory. D. subobscura males aggressively copulated with D. persimilis females, including many females that exhibit rejection behaviors. Despite females attempting to dismount the males, the heterospecific copulations are on average longer than conspecific copulations, and females exhibit some reluctance to remate with conspecific males following this harassment. Females confined with both conspecific and heterospecific males produce fewer adult progeny than those with either conspecific males only or with conspecific males and distantly related D. simulans males that do not engage in female harassment. Overall, our results illustrate how reproductive interference by an invasive species can have negative effects on resident natural populations.

12.
13.
Ecol Evol ; 7(2): 533-540, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116050

RESUMO

Genetic studies of secondary sexual traits provide insights into whether and how selection drove their divergence among populations, and these studies often focus on the fraction of variation attributable to genes on the X-chromosome. However, such studies may sometimes misinterpret the amount of variation attributable to the X-chromosome if using only simple reciprocal F1 crosses, or they may presume sexual selection has affected the observed phenotypic variation. We examined the genetics of a secondary sexual trait, male sex comb size, in Drosophila subobscura. This species bears unusually large sex combs for its species group, and therefore, this trait may be a good candidate for having been affected by natural or sexual selection. We observed significant heritable variation in number of teeth of the distal sex comb across strains. While reciprocal F1 crosses seemed to implicate a disproportionate X-chromosome effect, further examination in the F2 progeny showed that transgressive autosomal effects inflated the estimate of variation associated with the X-chromosome in the F1. Instead, the X-chromosome appears to confer the smallest contribution of all major chromosomes to the observed phenotypic variation. Further, we failed to detect effects on copulation latency or duration associated with the observed phenotypic variation. Overall, this study presents an examination of the genetics underlying segregating phenotypic variation within species and illustrates two common pitfalls associated with some past studies of the genetic basis of secondary sexual traits.

14.
Mol Ecol ; 26(1): 351-364, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27337640

RESUMO

Crossing over is well known to have profound effects on patterns of genetic diversity and genome evolution. Far less direct attention has been paid to another distinct outcome of meiotic recombination: noncrossover gene conversion (NCGC). Crossing over and NCGC both shuffle combinations of alleles, and this degradation of linkage disequilibrium (LD) has major evolutionary consequences, ranging from immediate effects on nucleotide diversity to long-term consequences that shape genome evolution, species formation and species persistence. Unlike simple crossing over, NCGC has the potential to alter allele frequencies. Gene conversion can also occur in genomic regions where crossing over does not, and it purportedly exhibits more uniform rates across genomes. Considerable progress has been made towards understanding the mechanisms of gene conversion, and this progress enables us to begin exploring how gene conversion affects processes such as molecular evolution and interspecies gene flow. These topics are timely with the recent shift in focus from a primarily neutral null model of molecular evolution and speciation to one incorporating base levels of selection, making it all the more crucial to understand the basis and evolutionary implications of linkage. Here, we discuss the impact of gene conversion on genome structure and evolution and the current methods for detecting these events. We provide a comprehensive review of how gene conversion breaks down LD and affects both short- and long-term evolutionary processes, and we contrast its impact to that expected from crossing over alone.


Assuntos
Evolução Molecular , Conversão Gênica , Especiação Genética , Troca Genética , Genoma , Desequilíbrio de Ligação , Recombinação Genética
15.
PLoS One ; 11(10): e0165032, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760228

RESUMO

Measures of genetic divergence have long been used to identify evolutionary processes operating within and between species. However, recent reviews have described a bias in the use of relative divergence measures towards incorrectly identifying genomic regions that are seemingly immune to introgression. Here, we present a novel and opposite bias of relative divergence measures: misidentifying regions of introgression between sister species. We examine two distinct haplotypes of intermediate frequency within Drosophila pseudoobscura at the DPSX009 locus. One of these haplotypes had lower relative divergence than another to sister species D. persimilis. Although we and others initially presumed one haplotype have spread via introgression between D. pseudoobscura and D. persimilis, absolute divergence measures and individual sequence analysis suggest that haplotype structuring occurred as the result of within-species processes. The potential for this type of misinference may occur with any haplotype that recently spread within a species. We conclude that absolute measures of genetic divergence are necessary for confirming putative regions of introgression.


Assuntos
Drosophila/genética , Fluxo Gênico , Variação Genética , Animais , Evolução Molecular , Deriva Genética , Loci Gênicos , Haplótipos , Análise de Sequência de DNA/métodos
16.
Mol Ecol ; 25(11): 2333-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27145221

RESUMO

Richard G. Harrison passed away unexpectedly on April 12th, 2016. In this memoriam we pay tribute to the life and legacy of an extraordinary scientist, mentor, friend, husband, and father.


Assuntos
Genética/história , Hibridização Genética , Animais , Gryllidae/genética , História do Século XX , História do Século XXI
18.
Genome Biol Evol ; 7(10): 2829-42, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26430062

RESUMO

Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms.


Assuntos
Drosophila/genética , Evolução Molecular , Recombinação Genética , Animais , Sequência de Bases , Drosophila/enzimologia , Variação Genética , Genoma , Histona-Lisina N-Metiltransferase/genética , Humanos , Desequilíbrio de Ligação , Masculino , Meiose/genética , Dados de Sequência Molecular , Pan troglodytes , Especificidade da Espécie
19.
J Hered ; 106(4): 407-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25969560

RESUMO

Many molecular ecological and evolutionary studies sample wild populations at a single point in time, but that data represents genetic variation from a potentially unrepresentative snapshot in time. Variation across time in genetic parameters may occur quickly in species that produce multiple generations of offspring per year. Here, we compare genetic diversity in wild caught populations of Drosophila persimilis and Drosophila pseudoobscura collected 16 years apart at the same time of year and same site at 4 X-linked and 2 mitochondrial loci to assess genetic stability. We found no major changes in nucleotide diversity in either species, but we observed a drastic shift in Tajima's D between D. pseudoobscura timepoints at 1 locus associated with increased abundance of a set of related haplotypes. Our data also suggests that D. persimilis may have recently accelerated its demographic expansion. While the changes we observed were modest, this study reinforces the importance of considering potential temporal variation in genetic parameters within single populations over short evolutionary timescales.


Assuntos
Drosophila/genética , Evolução Molecular , Variação Genética , Genética Populacional , Animais , DNA Mitocondrial/genética , Drosophila/classificação , Loci Gênicos , Haplótipos , Análise de Sequência de DNA , Fatores de Tempo , Cromossomo X/genética
20.
G3 (Bethesda) ; 5(1): 45-8, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25380730

RESUMO

The scuttle fly, Megaselia scalaris, is often cited as a model in which to study early sex chromosome evolution because of its homomorphic sex chromosomes, low but measurable molecular differentiation between sex chromosomes, and occasional transposition of the male-determining element to different chromosomes in laboratory cultures. Counterintuitively, natural isolates consistently show sex linkage to the second chromosome. Frequent natural transposition of the male-determining element should lead to the loss of male specificity of any nontransposed material on the previous sex-linked chromosome pair. Using next-generation sequencing data from a newly obtained natural isolate of M. scalaris, we show that even highly conservative estimates for the size of the male-specific genome are likely too large to be contained within a transposable element. This result strongly suggests that transposition of the male-determining region either is extremely rare or has not persisted recently in natural populations, allowing for differentiation of the sex chromosomes of this species.


Assuntos
Dípteros/genética , Cromossomo Y/genética , Animais , Evolução Molecular , Feminino , Genoma de Inseto , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...