Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(7): 4301-4314, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38304558

RESUMO

Robust, hydrophobic woven cotton fabrics were obtained through the sol-gel dip coating of two different nanoparticle (NP) architectures; silica and silica-ZnO. Water repellency values as high as 148° and relatively low tilt angles for fibrous fabrics (12°) were observed, without the need for fluorinated components. In all cases, this enhanced functionality was achieved with the broad retention of water vapor permeability characteristics, i.e., less than 10% decrease. NP formation routes indicated direct bonding interactions in both the silica and silica-ZnO structures. The physico-chemical effects of NP-compatibilizer (i.e., polydimethoxysilane (PDMS) and n-octyltriethoxysilane (OTES) at different ratios) coatings on cotton fibres indicate that compatibilizer-NP interactions are predominantly physical. Whenever photoactive ZnO-containing additives were used, there was a minor decrease in hydrophobic character, but order of magnitude increases in UV-protective capability (i.e., UPF > 384); properties which were absent in non-ZnO-containing samples. Such water repellency and UPF capabilities were stable to both laundering and UV-exposure, resisting the commonly encountered UV-induced wettability transitions associated with photoactive ZnO. These results suggest that ZnO-containing silica NP coatings on cotton can confer both excellent and persistent surface hydrophobicity as well as UV-protective capability, with potential uses in wearables and functional textiles applications.

2.
Nano Lett ; 24(2): 657-666, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38180824

RESUMO

The cooling power provided by radiative cooling is unwanted during cold hours. Therefore, self-adaptive regulation is desired for radiative cooling, especially in all-weather applications. However, current routes for radiative cooling regulation are constrained by substrates and complicated processing. Here, self-adaptive radiative cooling regulation on various potential substrates (transparent wood, PET, normal glass, and cement) was achieved by a Fabry-Perot structure consisting of a silver nanowires (AgNWs) bottom layer, PMMA spacer, and W-VO2 top layer. The emissivity-modulated transparent wood (EMTW) exhibits an emissivity contrast of 0.44 (ε8-13-L = ∼0.19 and ε8-13-H = ∼0.63), which thereby yields considerable energy savings across different climate zones. The emissivity contrast can be adjusted by varying the spinning parameters during the deposition process. Positive emissivity contrast was also achieved on three other industrially relevant substrates via this facile and widely applicable route. This proves the great significance of the approach to the promotion and wide adoption of radiative cooling regulation concept in the built environment.

3.
RSC Adv ; 11(18): 10710-10726, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423570

RESUMO

Hydrogels are a popular class of biomaterial that are used in a number of commercial applications (e.g.; contact lenses, drug delivery, and prophylactics). Alginate-based tough hydrogel systems, interpenetrated with acrylamide, reportedly form both ionic and covalent cross-links, giving rise to their remarkable mechanical properties. In this work, we explore the nature, onset and extent of such hybrid bonding interactions between the complementary networks in a model double-network alginate-acrylamide system, using a host of characterisation techniques (e.g.; FTIR, Raman, UV-vis, and fluorescence spectroscopies), in a time-resolved manner. Further, due to the similarity of bonding effects across many such complementary, interpenetrating hydrogel networks, the broad bonding interactions and mechanisms observed during gelation in this model system, are thought to be commonly replicated across alginate-based and broader double-network hydrogels, where both physical and chemical bonding effects are present. Analytical techniques followed real-time bond formation, environmental changes and re-organisational processes that occurred. Experiments broadly identified two phases of reaction; phase I where covalent interaction and physical entanglements predominate, and; phase II where ionic cross-linking effects are dominant. Contrary to past reports, ionic cross-linking occurred more favourably via mannuronate blocks of the alginate chain, initially. Evolution of such bonding interactions was also correlated with the developing tensile and compressive properties. These structure-property findings provide mechanistic insights and future synthetic intervention routes to manipulate the chemo-physico-mechanical properties of dynamically-forming tough hydrogel structures according to need (i.e.; durability, biocompatibility, adhesion, etc.), allowing expansion to a broader range of more physically and/or environmentally demanding biomaterials applications.

4.
J Therm Biol ; 92: 102655, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32888559

RESUMO

The effect of four cooling strategies on cooling performance of a hybrid personal cooling system (HPCS) incorporated with phase change materials (PCMs) and electric fans in a hot environment (i.e., Tair = 36 ± 0.5 °C, RH = 59 ± 5%) was investigated. Twelve healthy young male participants underwent four 90-min trials comprising 70 min walking and 20 min resting periods. Cooling strategies adopted in this work were CON (control), PCM-control (PCMs were removed at the end of exercise), Fan-control (fans were switched OFF during the initial 20 min) and PCM&Fan-control (fans were turned ON after 20 min exercising and PCMs were removed after the 70-min exercise). Results demonstrated that the control of electric fans could suppress the mean skin temperature rise to 34.0 °C by over 15 min and also cut down the energy consumption of the HPCS from 15.6 W h to 12.1 W h over the entire 90-min trials. Thus, it is recommended that fans should be turned off at the beginning of hot exposure and switched on once participants felt warm. Our findings also showed that the removal of fully melted PCM packs from the HPCS could enhance the evaporative cooling effect brought about by air circulation. The removal of melted PCMs significantly reduced the physical load by 37.3% and ratings of perceived exertion (RPE) were decreased by 3.5-4.2 RPE units. This could also help quickly restore the PCM energy for future usage. In summary, cooling strategies demonstrated in this work could improve HPCS's overall cooling performance on workers while working in the studied hot environment.


Assuntos
Regulação da Temperatura Corporal , Transição de Fase , Roupa de Proteção , Materiais Inteligentes/química , Adulto , Temperatura Corporal , Temperatura Baixa , Temperatura Alta , Humanos , Masculino , Temperatura Cutânea , Adulto Jovem
5.
Polymers (Basel) ; 11(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816952

RESUMO

Silver nanoparticle (AgNP) and AgNP/reduced graphene oxide (rGO) nanocomposite impregnated medical grade polyviscose textile pads were formed using a facile, surface-mediated wet chemical solution-dipping process, without further annealing. Surfaces were sequentially treated in situ with a sodium borohydride (NaBH4) reducing agent, prior to formation, deposition, and fixation of Ag nanostructures and/or rGO nanosheets throughout porous non-woven (i.e., randomly interwoven) fibrous scaffolds. There was no need for stabilising agent use. The surface morphology of the treated fabrics and the reaction mechanism were characterised by Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-Vis) absorption spectra, X-ray diffraction (XRD), Raman spectroscopy, dynamic light scattering (DLS) energy-dispersive X-ray analysis (EDS), and scanning electron microscopic (SEM). XRD and EDS confirmed the presence of pure-phase metallic silver. Variation of reducing agent concentration allowed control over characteristic plasmon absorption of AgNP while SEM imaging, EDS, and DLS confirmed the presence of and dispersion of Ag particles, with smaller agglomerates existing with concurrent rGO use, which also coincided with enhanced AgNP loading. The composites demonstrated potent antimicrobial activity against the clinically relevant gram-negative Escherichia coli (a key causative bacterial agent of healthcare-associated infections; HAIs). The best antibacterial rate achieved for treated substrates was 100% with only a slight decrease (to 90.1%) after 12 equivalent laundering cycles of standard washing. Investigation of silver ion release behaviours through inductively coupled plasmon optical emission spectroscopy (ICP-OES) and laundering durability tests showed that AgNP adhesion was aided by the presence of the rGO host matrix allowing for robust immobilisation of silver nanostructures with relatively high stability, which offered a rapid, convenient, scalable route to conformal NP-decorated and nanocomposite soft matter coatings.

6.
ACS Omega ; 4(13): 15348-15358, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572833

RESUMO

Shape memory polymers (SMPs) are an exciting class of stimuli-responsive smart materials that demonstrate reactive and reversible changes in mechanical property, usually by switching between different states due to external stimuli. We report on the development of a polyurethane-based SMP foam for effective pressure redistribution that demonstrates controllable changes in dynamic pressure redistribution capability at a low transition temperature (∼24 °C)-ideally suited to matching modulations in body contact pressure for dynamic pressure relief (e.g., for alleviation or pressure ulcer effects). The resultant SMP material has been extensively characterized by a series of tests including stress-strain testing, compression testing, dynamic mechanical analysis, optical microscopy, UV-visible absorbance spectroscopy, variable-temperature areal pressure distribution, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, dynamic thermogravimetric analysis, and 1H nuclear magnetic resonance spectroscopy. The foam system exhibits high responsivity when tested for plantar pressure modulation with significant potential in pressure ulcers treatment. Efficient pressure redistribution (∼80% reduction in interface pressure), high stress response (∼30% applied stress is stored in fixity and released on recovery), and excellent deformation recovery (∼100%) are demonstrated in addition to significant cycling ability without performance loss. By providing highly effective pressure redistribution and modulation when in contact with the body's surface, this SMP foam offers novel mechanisms for alleviating the risk of pressure ulcers.

7.
Ergonomics ; 62(7): 928-939, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30885053

RESUMO

A novel design of personal cooling clothing incorporating additional insulation sandwiched between phase change materials (PCMs) and clothing outer layer is proposed. Performance of four personal cooling systems including clothing with only PCMs, clothing with PCMs and insulation (PCM + INS), clothing with PCMs and ventilation fans (HYB), and clothing with PCMs, ventilation fans and insulation (HYB + INS) was investigated. Effect of additional insulation on clothing cooling performance in terms of human physiological and perceptual responses was also examined. Human trials were carried out in a hot environment (i.e. 36 °C, RH = 59%). Results showed that significantly lower mean skin/torso temperatures were registered in HYB + INS as compared to HYB. In contrast, no significant effect of the use of insulation on both skin and body temperatures between PCM and PCM + INS was observed. Also, no significant difference in thermal sensations, thermal comfort, and skin wetness sensation was registered between cooling systems with and without additional insulation. Practitioner Summary: Hybrid personal cooling clothing has shown the ability to provide a relatively cool microclimate around the wearer' body while working in hot environments. The present work addresses the importance of cooling energy saving for PCMs in a hot environment. This work contributes to optimising cooling performance of hybrid personal cooling systems.


Assuntos
Regulação da Temperatura Corporal , Temperatura Baixa , Transtornos de Estresse por Calor/prevenção & controle , Roupa de Proteção , Adulto , Teste de Esforço , Frequência Cardíaca , Humanos , Masculino , Microclima , Temperatura Cutânea , Sudorese , Adulto Jovem
8.
Polymers (Basel) ; 9(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30966032

RESUMO

Poly(ethyleneterephthalate) (PET) is a multi-purpose and widely used synthetic polymer in many industrial fields because of its remarkable advantages such as low cost, light weight, high toughness and resistance to chemicals, and high abrasion resistance. However, PET suffers from poor dyeability due to its non-polar nature, benzene ring structure as well as high crystallinity. In this study, PET fabrics were firstly treated with an alkaline solution to produce carboxylic acid functional groups on the surface of the PET fabric, and then was modified by polyelectrolyte polymer through the electrostatic layer-by-layer self-assembly technology. The polyelectrolyte multilayer-deposited PET fabric was characterized using scanning electron microscopy SEM, contact angle, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The dyeability of PET fabrics before and after surface modification was systematically investigated. It showed that the dye-uptake of the polyelectrolyte multilayer-deposited PET fabric has been enhanced compared to that of the pristine PET fabric. In addition, its dyeability is strongly dependent on the surface property of the polyelectrolyte multilayer-deposited PET fabric and the properties of dyestuffs.

9.
Opt Express ; 21 Suppl 5: A750-64, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24104571

RESUMO

We present a novel approach towards achieving high visible transmittance for vanadium dioxide (VO(2)) coated surfaces whilst maintaining the solar energy transmittance modulation required for smart-window applications. Our method deviates from conventional approaches and utilizes subwavelength surface structures, based upon those present on the eyeballs of moths, that are engineered to exhibit broadband, polarization insensitive and wide-angle antireflection properties. The moth-eye functionalised surface is expected to benefit from simultaneous super-hydrophobic properties that enable the window to self-clean. We develop a set of design rules for the moth-eye surface nanostructures and, following this, numerically optimize their dimensions using parameter search algorithms implemented through a series of Finite Difference Time Domain (FDTD) simulations. We select six high-performing cases for presentation, all of which have a periodicity of 130 nm and aspect ratios between 1.9 and 8.8. Based upon our calculations the selected cases modulate the solar energy transmittance by as much as 23.1% whilst maintaining high visible transmittance of up to 70.3%. The performance metrics of the windows presented in this paper are the highest calculated for VO(2) based smart-windows.


Assuntos
Biomimética/instrumentação , Lentes , Mariposas/fisiologia , Fenômenos Fisiológicos Oculares , Óxidos/síntese química , Refratometria/instrumentação , Compostos de Vanádio/síntese química , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...