Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31270, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826701

RESUMO

In the present article, we prove the sharp upper bounds for the second order Hankel determinants |H2(1)|,|H2(2)| and related functionals |a2a3-a4|, |a2a5-a3a4| for q-starlike functions. An upper bound for the third order Hankel determinant |H3(1)| along with the sharp upper bounds for Toeplitz determinant |Tm(n)|, where (m,n)∈{(2,2),(2,3),(3,1),(3,2)} are attained. Many known results are also obtained as corollaries of our main results.

2.
Sci Rep ; 13(1): 17027, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813866

RESUMO

This paper explains the idea of t-intuitionistic fuzzy graphs as a powerful way to analyze and display relationships that are difficult to understand. The article also illustrates the ability of t-intuitionistic fuzzy graphs to establish complex relationships with multiple factors or dimensions of a physical situation under consideration. Moreover, the fundamental set operations of t-intuitionistic fuzzy graphs are proposed. The notions of homomorphism and isomorphism of t-intuitionistic fuzzy graphs are also introduced. Furthermore, the paper highlights a practical application of the proposed technique in the context of poverty reduction within a specific society. By employing t-intuitionistic fuzzy graphs, the research demonstrates the potential to address the multifaceted nature of poverty, considering various contributing factors and their interdependencies. This application showcases the versatility and effectiveness of t-intuitionistic fuzzy graphs as a tool for decision-making and policy planning in complex societal issues.

3.
Nanomaterials (Basel) ; 13(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770558

RESUMO

Advancements in technology related to energy systems, such as heat exchangers, electronics, and batteries, are associated with the generation of high heat fluxes which requires appropriate thermal management. Presently, conventional thermal fluids have found limited application owing to low thermal conductivity (TC). The need for more efficient fluids has become apparent leading to the development of nanofluids as advanced thermal fluids. Nanofluid synthesis by suspending nano-size materials into conventional thermal fluids to improve thermal properties has been extensively studied. TC is a pivotal property to the utilization of nanofluids in various applications as it is strongly related to improved efficiency and thermal performance. Numerous studies have been conducted on the TC of nanofluids using diverse nanoparticles and base fluids. Different values of TC enhancement have been recorded which depend on various factors, such as nanoparticles size, shape and type, base fluid and surfactant type, temperature, etc. This paper attempts to conduct a state-of-the-art review of the TC enhancement of metal oxide nanofluids owing to the wide attention, chemical stability, low density, and oxidation resistance associated with this type of nanofluid. TC and TC enhancements of metal oxide nanofluids are presented and discussed herein. The influence of several parameters (temperature, volume/weight concentration, nano-size, sonication, shape, surfactants, base fluids, alignment, TC measurement techniques, and mixing ratio (for hybrid nanofluid)) on the TC of metal oil nanofluids have been reviewed. This paper serves as a frontier in the review of the effect of alignment, electric field, and green nanofluid on TC. In addition, the mechanisms/physics behind TC enhancement and techniques for TC measurement have been discussed. Results show that the TC enhancement of metal oxide nanofluids is affected by the aforementioned parameters with temperature and nanoparticle concentration contributing the most. TC of these nanofluids is observed to be actively enhanced using electric and magnetic fields with the former requiring more intense studies. The formulation of green nanofluids and base fluids as sustainable and future thermal fluids is recommended.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678031

RESUMO

In response to the issues of environment, climate, and human health coupled with the growing demand for energy due to increasing population and technological advancement, the concept of sustainable and renewable energy is presently receiving unprecedented attention. To achieve these feats, energy savings and efficiency are crucial in terms of the development of energy-efficient devices and thermal fluids. Limitations associated with the use of conventional thermal fluids led to the discovery of energy-efficient fluids called "nanofluids, which are established to be better than conventional thermal fluids. The current research progress on nanofluids has led to the development of the advanced nanofluids coined "hybrid nanofluids" (HNFs) found to possess superior thermal-optical properties than conventional thermal fluids and nanofluids. This paper experimentally explored the published works on the application of HNFs as thermal transport media in solar energy collectors and thermal energy storage. The performance of hybrid nano-coolants and nano-thermal energy storage materials has been critically reviewed based on the stability, types of hybrid nanoparticles (HNPs) and mixing ratios, types of base fluids, nano-size of HNPs, thermal and optical properties, flow, photothermal property, functionalization of HNPs, magnetic field intensity, and orientation, and φ, subject to solar and thermal energy storage applications. Various HNFs engaged in different applications were observed to save energy and increase efficiency. The HNF-based media performed better than the mono nanofluid counterparts with complementary performance when the mixing ratios were optimized. In line with these applications, further experimental studies coupled with the influence of magnetic and electric fields on their performances were research gaps to be filled in the future. Green HNPs and base fluids are future biomaterials for HNF formulation to provide sustainable, low-cost, and efficient thermal transport and energy storage media.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36231164

RESUMO

Transportation has the highest dependence on fossil fuels of any sector and accounts for 37% of carbon dioxide (CO2) emissions. Maritime transportation is responsible for around 940 million tons of CO2 and approximately 3% of global emissions annually. The significant increase in shipping activities around the globe has magnified the generation of toxic pollutants. In recent years, shipping emissions have received significant attention in developed countries due to global climate change, while in developing countries, researchers are making enormous efforts to tackle this catastrophic and pressing issue. This study considers Muhammad Bin Qasim Port (MBQP), Karachi, Pakistan as a case study. This study employed an activity-based or bottom-up approach with a standard procedure to estimate the various anthropogenic pollutants emissions including particular matters (PM10 and PM2.5), nitrogen oxide (NOx), sulfur dioxide (SO2), carbon monoxide (CO), CO2, methane (CH4), non-methane volatile organic compound (NMVOC), and hydrocarbon (HC) under different operational modes, i.e., hoteling, maneuvering, and reduced speed zones. The results indicated that CO2 was the highest contributor with a proportion of 92%, NOx 5%, and SO2 1.5% for all three operational modes. Moreover, the results indicated that container ships account for 64% of overall emissions, followed by tankers for 24%. Regarding the monthly trend, the findings revealed that November and December had the highest emission rates, with over 20% of the total emissions recorded. This study's findings will assist stakeholders and policymakers to prioritize maritime emissions in developing countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Carbono/análise , Monóxido de Carbono , Países em Desenvolvimento , Combustíveis Fósseis , Óxidos de Nitrogênio/análise , Paquistão , Material Particulado/análise , Navios , Dióxido de Enxofre , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
6.
J Environ Sci (China) ; 108: 107-119, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465425

RESUMO

The promising solar irradiated photocatalyst by pairing of bismuth oxide quantum dots (BQDs) doped TiO2 with nitrogen doped graphene oxide (NGO) nanocomposite (NGO/BQDs-TiO2) was fabricated. It was used for degradation of organic pollutants like 2,4-dichlorophenol (2,4-DCP) and stable dyes, i.e. Rhodamine B and Congo Red. X-ray diffraction (XRD) profile of NGO showed reduction in oxygenic functional groups and restoring of graphitic crystal structure. The characteristic diffraction peaks of TiO2 and its composites showed crystalline anatase TiO2. Morphological images represent spherical shaped TiO2 evenly covered with BQDs spread on NGO sheet. The surface linkages of NO-O-Ti, C-O-Ti, Bi-O-Ti and vibrational modes are observed by Fourier transform infrared spectroscopy (FTIR) and Raman studies. BQDs and NGO modified TiO2 results into red shifting in visible region as studied in diffused reflectance spectroscopy (DRS). NGO and BQDs in TiO2 are linked with defect centers which reduced the recombination of free charge carriers by quenching of photoluminescence (PL) intensities. X-ray photoelectron spectroscopy (XPS) shows that no peak related to C-O in NGO/BQDs-TiO2 is observed. This indicated that doping of nitrogen into GO has reduced some oxygen functional groups. Nitrogen functionalities in NGO and photosensitizing effect of BQDs in ternary composite have improved photocatalytic activity against organic pollutants. Intermediate byproducts during photo degradation process of 2,4-DCP were studied through high performance liquid chromatography (HPLC). Study of radical scavengers indicated that O2·- has significant role for degradation of 2,4-DCP. Our investigations propose that fabricated nanohybrid architecture has potential for degradation of environmental pollutions.


Assuntos
Nitrogênio , Água , Catálise , Luz , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...