Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(18): 5514-5531, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37481465

RESUMO

Diel regulation of protein levels and protein modification had been less studied than transcript rhythms. Here, we compare transcriptome data under light-dark cycles with partial proteome and phosphoproteome data, assayed using shotgun MS, from the alga Ostreococcus tauri, the smallest free-living eukaryote. A total of 10% of quantified proteins but two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-stimulated protein synthesis can account for the observed clustering of protein peaks in the daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested cultures under prolonged darkness, where the proteome changed less than under the diel cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of rhythmic phospho-sites reached peak levels just before dawn. This anticipatory phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for daytime functions. Acid-directed and proline-directed protein phosphorylation sites were regulated in antiphase, implicating the clock-related casein kinases 1 and 2 in phase-specific regulation, alternating with the CMGC protein kinase family. Understanding the dynamic phosphoprotein network should be facilitated by the minimal kinome and proteome of O. tauri. The data are available from ProteomeXchange, with identifiers PXD001734, PXD001735, and PXD002909.


Assuntos
Clorófitas , Proteoma , Proteoma/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação
2.
iScience ; 26(3): 106134, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866249

RESUMO

Metabolic homeostasis is regulated by enzyme activities, but the importance of regulating their corresponding coenzyme levels is unexplored. The organic coenzyme thiamine diphosphate (TDP) is suggested to be supplied as needed and controlled by a riboswitch-sensing mechanism in plants through the circadian-regulated THIC gene. Riboswitch disruption negatively impacts plant fitness. A comparison of riboswitch-disrupted lines to those engineered for enhanced TDP levels suggests that time-of-day regulation of THIC expression particularly under light/dark cycles is crucial. Altering the phase of THIC expression to be synchronous with TDP transporters disrupts the precision of the riboswitch implying that temporal separation of these processes by the circadian clock is important for gauging its response. All defects are bypassed by growing plants under continuous light conditions, highlighting the need to control levels of this coenzyme under light/dark cycles. Thus, consideration of coenzyme homeostasis within the well-studied domain of metabolic homeostasis is highlighted.

3.
New Phytol ; 230(2): 416-432, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264424

RESUMO

Plant fitness is a measure of the capacity of a plant to survive and reproduce in its particular environment. It is inherently dependent on plant health. Molecular timekeepers like the circadian clock enhance fitness due to their ability to coordinate biochemical and physiological processes with the environment on a daily basis. Central metabolism underlies these events and it is well established that diel metabolite adjustments are intimately and reciprocally associated with the genetically encoded clock. Thus, metabolic pathway activities are time-of-day regulated. Metabolite rhythms are driven by enzymes, a major proportion of which rely on organic coenzymes to facilitate catalysis. The B vitamin complex is the key provider of coenzymes in all organisms. Emerging evidence suggests that B vitamin levels themselves undergo daily oscillations in animals but has not been studied in any depth in plants. Moreover, it is rarely considered that daily rhythmicity in coenzyme levels may dictate enzyme activity levels and therefore metabolite levels. Here we put forward the proposal that B-vitamin-derived coenzyme rhythmicity is intertwined with metabolic and clock derived rhythmicity to achieve a tripartite homeostasis integrated into plant fitness.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Coenzimas , Plantas , Homeostase
4.
Commun Biol ; 3(1): 209, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372067

RESUMO

In plants, metabolic homeostasis-the driving force of growth and development-is achieved through the dynamic behavior of a network of enzymes, many of which depend on coenzymes for activity. The circadian clock is established to influence coordination of supply and demand of metabolites. Metabolic oscillations independent of the circadian clock, particularly at the subcellular level is unexplored. Here, we reveal a metabolic rhythm of the essential coenzyme thiamine diphosphate (TDP) in the Arabidopsis nucleus. We show there is temporal separation of the clock control of cellular biosynthesis and transport of TDP at the transcriptional level. Taking advantage of the sole reported riboswitch metabolite sensor in plants, we show that TDP oscillates in the nucleus. This oscillation is a function of a light-dark cycle and is independent of circadian clock control. The findings are important to understand plant fitness in terms of metabolite rhythms.


Assuntos
Arabidopsis/metabolismo , Ritmo Circadiano , Tiamina Pirofosfato/metabolismo , Núcleo Celular/metabolismo , Fotoperíodo
6.
New Phytol ; 213(2): 727-738, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27716936

RESUMO

We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , Ritmo Circadiano/efeitos da radiação , Luz , Fator sigma/metabolismo , Transdução de Sinais/efeitos da radiação , Transcrição Gênica , Arabidopsis/efeitos da radiação , Núcleo Celular/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Criptocromos/metabolismo , Genomas de Plastídeos , Luciferases/metabolismo , Fotorreceptores de Plantas/metabolismo , Fotossíntese/efeitos da radiação , Fitocromo/metabolismo
7.
Biochemistry ; 54(2): 171-83, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25379817

RESUMO

As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.


Assuntos
Clorófitas/fisiologia , Relógios Circadianos , Dinoflagellida/fisiologia , Euglena gracilis/fisiologia , Rodófitas/fisiologia , Ritmo Circadiano , Biologia Computacional
8.
BMC Genomics ; 15: 640, 2014 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-25085202

RESUMO

BACKGROUND: The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS: Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS: We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.


Assuntos
Clorófitas/citologia , Clorófitas/genética , Genômica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Arabidopsis/citologia , Arabidopsis/genética , Ciclo Celular/genética , Clorófitas/enzimologia , Relógios Circadianos/genética , Sequência Conservada , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
9.
Science ; 339(6125): 1316-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23493713

RESUMO

Circadian timekeeping in plants increases photosynthesis and productivity. There are circadian oscillations in the abundance of many chloroplast-encoded transcripts, but it is not known how the circadian clock regulates chloroplast transcription or the photosynthetic apparatus. We show that, in Arabidopsis, nuclear-encoded SIGMA FACTOR5 (SIG5) controls circadian rhythms of transcription of several chloroplast genes, revealing one pathway by which the nuclear-encoded circadian oscillator controls rhythms of chloroplast gene expression. We also show that SIG5 mediates the circadian gating of light input to a chloroplast-encoded gene. We have identified an evolutionarily conserved mechanism that communicates circadian timing information between organelles with distinct genetic systems and have established a new level of integration between eukaryotic circadian clocks and organelles of endosymbiotic origin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/genética , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Fator sigma/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fator sigma/genética , Transcrição Gênica
10.
J Biol Chem ; 287(5): 3185-96, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22139846

RESUMO

Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. Members of the CDF family are ubiquitously found in all living entities and show principal selectivity for Zn(2+), Mn(2+), and Fe(2+). Little is known regarding metal selectivity determinants of CDFs. We identified a novel cereal member of CDFs in barley, termed HvMTP1, that localizes to the vacuolar membrane. Unlike its close relative AtMTP1, which is highly selective for Zn(2+), HvMTP1 exhibits selectivity for both Zn(2+) and Co(2+) as assessed by its ability to suppress yeast mutant phenotypes for both metals. Expression of HvMTP1/AtMTP1 chimeras in yeast revealed a five-residue sequence within the AtMTP1 N-segment of the His-rich intracytoplasmic loop that confines specificity to Zn(2+). Furthermore, mutants of AtMTP1 generated through random mutagenesis revealed residues embedded within transmembrane domain 3 that additionally specify the high degree of Zn(2+) selectivity. We propose that the His-rich loop, which might play a role as a zinc chaperone, determines the identity of the metal ions that are transported. The residues within transmembrane domain 3 can also influence metal selectivity, possibly through conformational changes induced at the cation transport site located within the membrane or at the cytoplasmic C-terminal domain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hordeum/metabolismo , Metais/metabolismo , Vacúolos/patologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Hordeum/genética , Transporte de Íons/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/genética
11.
Biochem J ; 418(1): 145-54, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18950291

RESUMO

Internal compartmentalization of metals is an important metal tolerance mechanism in many organisms. In plants and fungi, sequestration into the vacuole is a major detoxification mechanism for metals. Cation transport into the vacuole can be mediated by CAX (cation exchanger) transporters. The Arabidopsis thaliana AtCAX2 transporter was shown previously to transport Ca(2+), Cd(2+) and Mn(2+). To assess the conservation of the functional and regulatory characteristics of CAX2-like transporters in higher plants, we have characterized AtCAX2 orthologues from Arabidopsis (AtCAX5), tomato (LeCAX2) and barley (HvCAX2). Substrate specificity and regulatory activity were assessed using a yeast heterologous-expression assay. Each CAX could transport Ca(2+) and Mn(2+) into the yeast vacuole, but they each had different cation transport kinetics. Most notably, there was variation in the regulation of the transporters. As found with AtCAX2 previously, only expression of an N-terminally truncated form of AtCAX5 in yeast was able to mediate Ca(2+) and Mn(2+) transport, indicating that activity may be controlled by an autoregulatory region at the N-terminus. In contrast, either full-length or truncated LeCAX2 could efficiently transport Ca(2+), although Mn(2+) transport was controlled by the N-terminus. HvCAX2 did not appear to possess an N-terminal regulatory domain. Expression of AtCAX2 was not significantly modulated by metal stress; however, AtCAX5 and HvCAX2 were transcriptionally up-regulated by high Mn(2+) treatment, and by Ca(2+) and Na(+) stress respectively. It is therefore apparent that, despite the high sequence identity between plant CAX2 orthologues, there is significant diversity in their functional characteristics, particularly with regard to regulatory mechanisms.


Assuntos
Antiporters/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Sequência de Aminoácidos , Antiporters/química , Antiporters/genética , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/farmacologia , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Cinética , Manganês/farmacologia , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...