Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2401625, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38582518

RESUMO

Thin-films patterned with complex motifs are of fundamental interest because of their advanced optical, mechanical and electronic properties, but fabrication of these materials remains challenging. Self-organization strategies, such as immersion controlled reaction-diffusion patterning, have shown great potential for production of patterned thin-films. However, the autonomous nature of such processes limits controllable pattern customizability and complexity. Here, it is demonstrated that photography inspired manipulation processes can overcome this limitation to create highly-complex tapestries of micropatterned films (MPF's). Inspired by classical photographic processes, MPF's are developed, bleached, exposed, fixed, and contoured into user-defined shapes and photographic toning reactions are used to convert the chemical composition MPF's, while preserving the original stripe patterns. By applying principles of composite photography, highly complex tapestries composed of multiple MPF layers are designed, where each layer can be individually manipulated into a specific shape and composition. By overcoming fundamental limitations, this synergistic approach broadens the design possibilities of reaction-diffusion processes, furthering the potential of self-organization strategies for the development of complex materials.

2.
Proc Natl Acad Sci U S A ; 115(14): 3575-3580, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555753

RESUMO

Controlling nucleation and growth is crucial in biological and artificial mineralization and self-assembly processes. The nucleation barrier is determined by the chemistry of the interfaces at which crystallization occurs and local supersaturation. Although chemically tailored substrates and lattice mismatches are routinely used to modify energy landscape at the substrate/nucleus interface and thereby steer heterogeneous nucleation, strategies to combine this with control over local supersaturations have remained virtually unexplored. Here we demonstrate simultaneous control over both parameters to direct the positioning and growth direction of mineralizing compounds on preselected polymorphic substrates. We exploit the polymorphic nature of calcium carbonate (CaCO3) to locally manipulate the carbonate concentration and lattice mismatch between the nucleus and substrate, such that barium carbonate (BaCO3) and strontium carbonate (SrCO3) nucleate only on specific CaCO3 polymorphs. Based on this approach we position different materials and shapes on predetermined CaCO3 polymorphs in sequential steps, and guide the growth direction using locally created supersaturations. These results shed light on nature's remarkable mineralization capabilities and outline fabrication strategies for advanced materials, such as ceramics, photonic structures, and semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...