Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 17(5): 056025, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055382

RESUMO

OBJECTIVE: In this paper, a novel methodology for feature extraction to enhance classification accuracy of functional near-infrared spectroscopy (fNIRS)-based two-class and three-class brain-computer interface (BCI) is presented. APPROACH: Novel features are extracted using vector-based phase analysis method. Changes in oxygenated [Formula: see text] and de-oxygenated [Formula: see text]) haemoglobin are used to calculate four novel features: change in cerebral blood volume ([Formula: see text]), change in cerebral oxygen exchange ([Formula: see text]), vector magnitude (|L|) and angle (k). [Formula: see text] is the sum and [Formula: see text] is difference of [Formula: see text] and [Formula: see text], whereas |L| is magnitude and k is angle of vector. fNIRS signals of seven healthy subjects, corresponding to left-hand index finger tapping (LFT), right-hand index finger tapping (RFT) and rest are acquired from motor cortex using multi-channel continuous-wave imaging system. After removing physiological and instrumental noises from the acquired signals, the four novel features are calculated. For validation, conventional temporal, spatial and spatiotemporal features; mean, peak, slope, variance, kurtosis and skewness are also calculated using [Formula: see text] and[Formula: see text]. All possible two-feature and three-feature combinations of the novel and conventional features are then used to classify two-class (LFT vs RFT) and three-class (LFT vs RFT vs rest) fNIRS-BCI using linear discriminant analysis. MAIN RESULTS: Results demonstrate that combination of four novel features yields significantly higher average classification accuracies of 98.7 ± 1.0% and 85.4 ± 1.4% as compared to 68.7 ± 6.9% and 53.6 ± 10.6% using conventional features for two-class and three-class problem, respectively. Validation of proposed method on an open access database containing RFT, LFT and dominant side foot tapping tasks for 30 subjects also shows improvement in average classification accuracies for two-class and three-class fNIRS-BCIs. SIGNIFICANCE: This study provides a step forward in improving the classification accuracies of state-of-the-art fNIRS-BCIs by showing significant improvement in classification accuracies of two-class and three-class fNIRS-BCIs using novel features extracted by vector-based phase analysis.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Análise Discriminante , Humanos , Imaginação , Espectroscopia de Luz Próxima ao Infravermelho
2.
J Neuroeng Rehabil ; 15(1): 7, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402310

RESUMO

BACKGROUND: In this paper, a novel functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI) framework for control of prosthetic legs and rehabilitation of patients suffering from locomotive disorders is presented. METHODS: fNIRS signals are used to initiate and stop the gait cycle, while a nonlinear proportional derivative computed torque controller (PD-CTC) with gravity compensation is used to control the torques of hip and knee joints for minimization of position error. In the present study, the brain signals of walking intention and rest tasks were acquired from the left hemisphere's primary motor cortex for nine subjects. Thereafter, for removal of motion artifacts and physiological noises, the performances of six different filters (i.e. Kalman, Wiener, Gaussian, hemodynamic response filter (hrf), Band-pass, finite impulse response) were evaluated. Then, six different features were extracted from oxygenated hemoglobin signals, and their different combinations were used for classification. Also, the classification performances of five different classifiers (i.e. k-Nearest Neighbour, quadratic discriminant analysis, linear discriminant analysis (LDA), Naïve Bayes, support vector machine (SVM)) were tested. RESULTS: The classification accuracies obtained from SVM using the hrf were significantly higher (p < 0.01) than those of the other classifier/ filter combinations. Those accuracies were 77.5, 72.5, 68.3, 74.2, 73.3, 80.8, 65, 76.7, and 86.7% for the nine subjects, respectively. CONCLUSION: The control commands generated using the classifiers initiated and stopped the gait cycle of the prosthetic leg, the knee and hip torques of which were controlled using the PD-CTC to minimize the position error. The proposed scheme can be effectively used for neurofeedback training and rehabilitation of lower-limb amputees and paralyzed patients.


Assuntos
Membros Artificiais , Interfaces Cérebro-Computador , Exoesqueleto Energizado , Reabilitação Neurológica , Robótica , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Análise Discriminante , Humanos , Masculino , Reabilitação Neurológica/instrumentação , Reabilitação Neurológica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Máquina de Vetores de Suporte
3.
Front Neurorobot ; 11: 33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769781

RESUMO

In this paper, a novel methodology for enhanced classification of functional near-infrared spectroscopy (fNIRS) signals utilizable in a two-class [motor imagery (MI) and rest; mental rotation (MR) and rest] brain-computer interface (BCI) is presented. First, fNIRS signals corresponding to MI and MR are acquired from the motor and prefrontal cortex, respectively, afterward, filtered to remove physiological noises. Then, the signals are modeled using the general linear model, the coefficients of which are adaptively estimated using the least squares technique. Subsequently, multiple feature combinations of estimated coefficients were used for classification. The best classification accuracies achieved for five subjects, for MI versus rest are 79.5, 83.7, 82.6, 81.4, and 84.1% whereas those for MR versus rest are 85.5, 85.2, 87.8, 83.7, and 84.8%, respectively, using support vector machine. These results are compared with the best classification accuracies obtained using the conventional hemodynamic response. By means of the proposed methodology, the average classification accuracy obtained was significantly higher (p < 0.05). These results serve to demonstrate the feasibility of developing a high-classification-performance fNIRS-BCI.

4.
Neurosci Lett ; 647: 61-66, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28336339

RESUMO

In this paper, a novel technique for determination of the optimal feature combinations and, thereby, acquisition of the maximum classification performance for a functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI), is proposed. After obtaining motor-imagery and rest signals from the motor cortex, filtering is applied to remove the physiological noises. Six features (signal slope, signal mean, signal variance, signal peak, signal kurtosis and signal skewness) are then extracted from the oxygenated hemoglobin (HbO). Afterwards, the hybrid genetic algorithm (GA)-support vector machine (SVM) is applied in order to determine and classify 2- and 3-feature combinations across all subjects. The SVM classifier is applied to classify motor imagery versus rest. Moreover, four time windows (0-20s, 0-10s, 11-20s and 6-15s) are selected, and the hybrid GA-SVM is applied in order to extract the optimal 2- and 3-feature combinations. In the present study, the 11-20s time window showed significantly higher classification accuracies - the minimum accuracy was 91% - than did the other time windows (p<0.05). The proposed hybrid GA-SVM technique, by selecting optimal feature combinations for an fNIRS-based BCI, shows positive classification-performance-enhancing results.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Algoritmos , Humanos , Imaginação , Masculino , Máquina de Vetores de Suporte
5.
Comput Intell Neurosci ; 2016: 5480760, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725827

RESUMO

We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals. Two- and three-dimensional combinations of those features were used for classification of mental tasks. In the classification, six different modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbour (kNN), the Naïve Bayes approach, support vector machine (SVM), and artificial neural networks (ANN), were utilized. With these classifiers, the average classification accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6, 90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classification accuracies: 91.4 and 96.3%. In order to validate the results, a statistical significance test was performed, which confirmed that the p values were statistically significant relative to all of the other classifiers (p < 0.005) using HbO signals.


Assuntos
Interfaces Cérebro-Computador , Oxiemoglobinas/metabolismo , Córtex Pré-Frontal/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Teorema de Bayes , Análise Discriminante , Humanos , Testes Neuropsicológicos , Processamento de Sinais Assistido por Computador , Espectroscopia de Luz Próxima ao Infravermelho/classificação , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...