Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16566, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019931

RESUMO

Biologically mediated synthesis of nanomaterials has emerged as an ecologically benign and biocompatible approach. Our study explores enzymatic synthesis, utilizing α-amylase to synthesize ZnO nanoflowers (ZnO-NFs). X-ray diffraction and energy-dispersive X-ray spectroscopy revealed crystal structure and elemental composition. Dynamic light scattering analysis indicates that ZnO-NFs possess a size of 101 nm. Transmission electron microscopy showed a star-shaped morphology of ZnO-NFs with petal-like structures. ZnO-NFs exhibit potent photocatalytic properties, degrading 90% eosin, 87% methylene blue, and 81% reactive red dyes under UV light, with kinetics fitting the Langmuir-Hinshelwood pseudo-first-order rate law. The impact of pH and interfering substances on dye degradation was explored. ZnO-NFs display efficient bacteriocidal activity against different Gram-positive and negative strains, antibiofilm potential (especially with P. aeruginosa), and hemocompatibility up to 600 ppm, suggesting versatile potential in healthcare and environmental remediation applications.


Assuntos
Química Verde , Óxido de Zinco , alfa-Amilases , Óxido de Zinco/química , Óxido de Zinco/farmacologia , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Química Verde/métodos , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Biomimética/métodos , Humanos
2.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722774

RESUMO

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Assuntos
Antibacterianos , Biofilmes , Catecol Oxidase , Tamanho da Partícula , Biofilmes/efeitos dos fármacos , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Catecol Oxidase/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Simulação de Acoplamento Molecular , Escherichia coli/efeitos dos fármacos
3.
Enzyme Microb Technol ; 176: 110422, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402827

RESUMO

The utilisation of carbonic anhydrase (CA) in CO2 sequestration is becoming prominent as an efficient, environment friendly and rapid catalyst for capturing CO2 from industrial emissions. However, the application of CA enzyme in soluble form is constrained due to its poor stability in operational conditions of CO2 capture and also production cost of the enzyme. Addressing these limitations, the present study focuses on the surface display of CA from Bacillus halodurans (BhCA) on E coli aiming to contribute to the cost-effectiveness of carbon capture through CA technology. This involved the fusion of the BhCA-encoding gene with the adhesion molecule involved in diffuse adherence (AIDA-I) autotransporter, resulting in the efficient display of BhCA (595 ± 60 U/gram dry cell weight). Verification of the surface display of BhCA was accomplished by conjugating with FITC labelled anti-his antibody followed by fluorescence-activated cell sorting (FACS) and cellular fractionation in conjunction with zymography. Biochemical characterisation of whole-cell biocatalyst revealed a noteworthy enhancement in thermostability, improvement in the thermostability with T1/2 of 90 ± 1.52 minutes at 50 ˚C, 36 ± 2.51 minutes at 60 ˚C and18 ± 1.52 minutes at 80˚C. Surface displayed BhCA displayed remarkable reusability retaining 100% activity even after 15 cycles. Surface displayed BhCA displayed highly alkali stable nature like free counterpart in solution. The alkali stability of the surface-displayed BhCA was comparable to its free counterpart in solution. Furthermore, the study investigated the impact of different metal ions, modulators, and detergents on the whole-cell biocatalysts. The present work represents the first report on surface display of CA utilising the AIDA-1 autotransporter.


Assuntos
Anidrases Carbônicas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Álcalis
4.
Int J Biol Macromol ; 227: 974-985, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464190

RESUMO

Bio-imprinted magnetic cross-linked enzyme aggregates (i-m-CLEAs) of polyphenol oxidase (PPO) obtained from potato peels were prepared using amino-functionalized magnetic nanoparticles. Bio-imprinting is being used to improve the catalytic efficiency and conformational stability of enzymes. For bio-imprinting, PPO was incubated with different imprint/template molecules (catechol, 4-methyl catechol and l-3,4-dihydroxy phenylalanine) before cross-linking with glutaraldehyde. CLEAs imprinted with 4-methyl catechol showed maximum activity as compared with non-bio-imprinted magnetic CLEAs (m-CLEAs). They were further characterized by scanning electron microscopy and confocal microscopy. In bio-imprinted m-CLEAs, half-life (t1/2) of PPO significantly improved (364.74 min) as compared to free PPO (43.58 min) and non-bio-imprinted m-CLEAs (266.54 min). Bio-imprinted m-CLEAs showed excellent thermal and storage stability as well as reusability. The CLEAs preparation were used for the synthesis of l-3,4-dihydroxyphenylalanine (L-dopa, a therapeutic drug to treat neurodegenerative disorder) and a remarkable increase in L-dopa yield (23.5-fold) was obtained as compared to free enzyme. A cost effective and reusable method has been described for the production of L-dopa.


Assuntos
Enzimas Imobilizadas , Levodopa , Reagentes de Ligações Cruzadas , Temperatura , Concentração de Íons de Hidrogênio , Enzimas Imobilizadas/metabolismo , Fenômenos Magnéticos , Estabilidade Enzimática
5.
Mol Biol Rep ; 49(11): 10729-10748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35790657

RESUMO

BACKGROUND: SARS-CoV-2 which causes COVID-19 disease has started a pandemic episode all over the world infecting millions of people and has created medical and economic crisis. From December 2019, cases originated from Wuhan city and started spreading at an alarming rate and has claimed millions of lives till now. Scientific studies suggested that this virus showed genomic similarity of about 90% with SARS-CoV and is found to be more contagious as compared to SARS-CoV and MERS-CoV. Since the pandemic, virus has undergone constant mutation and few strains have raised public concern like Delta and Omicron variants of SARS-CoV-2. OBJECTIVE: This review focuses on the structural features of SARS-CoV-2 proteins and host proteins as well as their mechanism of action. We have also elucidated the repurposed drugs that have shown potency to inhibit these protein targets in combating COVID-19. Moreover, the article discusses the vaccines approved so far and those under clinical trials for their efficacy against COVID-19. CONCLUSION: Using cryo-electron microscopy or X-ray diffraction, hundreds of crystallographic data of SARS-CoV-2 proteins have been published including structural and non-structural proteins. These proteins have a significant role at different aspects in the viral machinery and presented themselves as potential target for drug designing and therapeutic interventions. Also, there are few host cell proteins which helps in SARS-CoV-2 entry and proteolytic cleavage required for viral infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Microscopia Crioeletrônica , Antivirais/farmacologia , Antivirais/uso terapêutico
6.
Int J Biol Macromol ; 186: 780-787, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280443

RESUMO

In the present study different enzymes (α- amylase, trypsin, cellulase, horse-radish peroxidase and pectinex ultra clear) were studied for bacterial biofilm inhibition and Pectinex ultra clear showed best inhibition. So, m-combi-CLEA of Pectinex ultra clear was developed by cross linked enzyme aggregate (CLEA) formation on APTES (3-aminopropyltriethoxysilane) modified iron oxide nanoparticles. Different parameters were optimized and it was observed that 0.4 mg/ml of protein (containing 25 U/mg cellulase activity), 0.5 mg/ml BSA and 10 mM glutaraldehyde when incubated for 3 h gives 100% enzyme activity using ethanol as the precipitant. The CLEA formed were thermally more stable as compared to free enzyme. m-combi-CLEA of Pectinex ultra clear shows 75-78% biofilm inhibition of E. coli and S. aureus. Furthermore, m-combi-CLEA can be reused till 4 cycles with same efficiency. The carbohydrate contents of E. coli biofilm decreased from 64.629 µg to 6.23 µg and for S. aureus biofilm, it decreased from 58.46 µg to 5.52 µg when treated with m-combi CLEA in comparison to untreated biofilms. FTIR, darkfield illumination Fluorescence Microscopy, and Scanning Electron Microscopy was further used for characterization.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Enzimas Imobilizadas/farmacologia , Escherichia coli/efeitos dos fármacos , Química Verde , Magnetismo , Complexos Multienzimáticos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Biofilmes/crescimento & desenvolvimento , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Hidrólise , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
7.
Environ Sci Pollut Res Int ; 27(24): 30081-30092, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447731

RESUMO

In the present work, polyphenol oxidase (PPO) enzyme was purified from potato peel using three-phase partitioning (TPP). In this method, ammonium sulfate and t-butanol were added to precipitate the protein/enzyme from the crude aqueous extract. The PPO enzyme precipitated as an interfacial layer between the upper organic solvent phase and lower aqueous phase. Different purification parameters such as crude extract to t-butanol ratio, ammonium sulfate concentration, temperature, and pH were optimized for TPP. About 69% PPO enzyme activity was recovered in a single step of TPP with 9.2-fold purification. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of partially purified PPO enzyme showed molecular weight in the range of about 30-40 kDa. The PPO enzyme was then investigated for the fabrication of a portable, cost-effective, and disposable colorimetric paper biosensor or colorimetric "test strips" for detection of phenolic contaminants. PPO and a chromophore reagent (3-methyl-2-benzothiazolinone hydrazine) generated a range of color in the presence of phenolic compounds (catechol, phenol, p-cresol, 4-methyl catechol) within 15 min, and limit of detection was found to be 0.5 µM. The biosensor worked in a broad range of pH from 3 to 11 and showed good storage stability at 25 °C and 4 °C for 30 days with no significant loss of activity. The biosensor was also applied on environmental water and urine sample to show reliability of biosensor.


Assuntos
Técnicas Biossensoriais , Catecol Oxidase , Fenóis , Reprodutibilidade dos Testes , Água
8.
Environ Sci Pollut Res Int ; 26(22): 23070-23081, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187375

RESUMO

Water contaminants like pathogenic microbes and organic pollutants pose a serious threat to human and aquatic life forms; thus, there is an urgent need to develop a sustainable and affordable water treatment technology. Nanomaterials especially metal nanoparticles have extensive applications in wastewater treatment, but the recovery and aggregation of nanoparticles in solution is a major limitation. In the present work, green synthesized silver nanoparticles were covalently immobilized on a glass surface to prevent aggregation of nanoparticles and to enhance their applicability. Fourier transform infrared (FTIR) of silver nanoparticle (AgNP)-coated glass shows peaks of Si-O-Si, Si-O-C, and Ag-O at 1075 cm-1, 780 cm-1, and 608 cm-1 respectively which confirms the immobilization/conjugation of nanomaterial on glass surface. The surface morphology of immobilized AgNP was studied using scanning electron microscopy (SEM) which reveals nanoparticles are spherical and uniformly distributed on glass surface. The AgNP-coated glass was used for the removal of textile dyes in solution; the result indicates approximately 95% of textile dyes were removed after 5 h of treatment. Removal of microbial contaminants from Yamuna River was studied by optical density analysis and confirmed by fluorescence dye staining. The AgNP-coated glass was also studied for their reusability and the data indicates 50% removal of microbes up to the 5th cycle. To further enhance the applicability, the inhibition of bacterial biofilms were analyzed by dark-field illumination with a fluorescence microscope. Thus AgNP-coated glass can be used in the development of food/water storage containers and in textile industries.


Assuntos
Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/análise , Prata/química , Águas Residuárias/análise , Poluição da Água/análise , Vidro , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...