Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169376, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104827

RESUMO

Excessive use of plastics in daily life is causing plastic pollution in aquatic environment and threatening the aquatic life. Therefore, research on the plastic pollution in aquatic environment is crucial to understand its impact and develop effective solution for safeguarding aquatic life and ecosystem. The current study investigated the effects of water borne polystyrene nanoparticles (PS-NPs) on hemato-immunological indices, serum metabolic enzymes, gills, and liver antioxidant parameters, plasma cortisol level and histopathological changes in liver and gill tissues of the widely distributed fish Hypophthalmichthys molitrix. The fingerlings of H. molitrix were exposed to different concentrations (T1-0.5, T2-1.0, and T3-2.0 mg/L) of PS-NPs respectively for 15 days consecutively. Our results indicated the dose dependent negative effects of PS-NPs on the physiology and histopathology of H. molitrix. Immuno-hematological indices showed significant increase in WBCs count, phagocytic activity, and lysozyme activity, while decreased RBC count, Hct%, Hb level, total proteins, IgM, and respiratory burst activity were observed. The levels of antioxidant enzymes like SOD, CAT and POD showed the decreasing trends while metabolic enzymes (AST, ALT, ALP and LDH), LPO, ROS activities and relative expressions of SOD1, CAT, HIF1-α and HSP-70 genes increased with increased concentrations of PS-NPs. Moreover, blood glucose and cortisol levels also showed significant increasing trends with dose dependent manner. Histopathological examination indicated moderate to severe changes in the gills and liver tissues of the group treated with 2.0 mg/L of PS-NPs. Overall, the results showed the deleterious effects of PS-NPs on physiology, immunity, metabolism, and gene expressions of H. molitrix. It is concluded that particulate plastic pollution has deleterious effects on filter feeding fish, which might affect human health through food chain and particulate chemical toxicity.


Assuntos
Carpas , Nanopartículas , Poluentes Químicos da Água , Animais , Humanos , Antioxidantes/metabolismo , Carpas/metabolismo , Poliestirenos/toxicidade , Hidrocortisona , Ecossistema , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Toxicol In Vitro ; 95: 105766, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104743

RESUMO

Considering the wide application of nanoparticles in various fields of life and growing concern regarding their toxic effects, the present study was designed with the aim to evaluate the potential risks of using copper sulfate nanoparticles (CuSO4-NPs) in comparison to bulk form. Nanoparticles of CuSO4, having mean size of 73 nm were prepared by ball milling method, and fingerlings of Labeo rohita were exposed to two levels, 20 and 100 µg L-1 of CuSO4 in both bulk and nano forms for 28 days and their comparative effects on the metallothioneins (MTs), heat shock proteins 70 (HSP 70), lipid profile, cholesterol (CHOL) and triglyceraldehyde (TG) levels, activities of some metabolic enzymes Alanine transaminase (ALT), Aspartate transaminase (AST) Akaline phosphatase (ALP), and genes expressions of HSP-70, TNF-α and IL1-ß were investigated. CuSO4 showed the concentration and particle type dependent effects. The over expression of HSPs and MTs, significant decreases in CHOL, TG, low density lipid (LDL) levels and ALP activity, while significant increases in high density lipid (HDL)level as well as ALT and AST activities and HSP-70, TNF-α and IL1-ß expressions were observed in response to higher concentration of both bulk and nano form of copper sulfate. At lower concentration (20 µg L-1), however, only bulk form showed toxicity. Thus, low concentrations of CuSO4-NPs pose negligible threat to freshwater fish.


Assuntos
Sulfato de Cobre , Nanopartículas , Animais , Sulfato de Cobre/toxicidade , Fator de Necrose Tumoral alfa , Nanopartículas/toxicidade , Expressão Gênica , Alanina Transaminase/metabolismo , Proteínas de Choque Térmico HSP70 , Lipídeos , Cobre/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...