Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 120: 110343, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33730559

RESUMO

The meniscus is crucial in maintaining the knee function and protecting the joint from secondary pathologies, including osteoarthritis. Although most of the mechanical properties of human menisci have been characterized, to our knowledge, its dynamic shear properties have never been reported. Moreover, little is known about meniscal shear properties in relation to tissue structure and composition. This is crucial to understand mechanisms of meniscal injury, as well as, in regenerative medicine, for the design and development of tissue engineered scaffolds mimicking the native tissue. Hence, the objective of this study was to characterize the dynamic and equilibrium shear properties of human meniscus in relation to its anisotropy and composition. Specimens were prepared from the axial and the circumferential anatomical planes of medial and lateral menisci. Frequency sweeps and stress relaxation tests yielded storage (G') and loss moduli (G″), and equilibrium shear modulus (G). Correlations of moduli with water, glycosaminoglycans (GAGs), and collagen content were investigated. The meniscus exhibited viscoelastic behavior. Dynamic shear properties were related to tissue composition: negative correlations were found between G', G″ and G, and meniscal water content; positive correlations were found for G' and G″ with GAG and collagen (only in circumferential samples). Circumferential samples, with collagen fibers orthogonal to the shear plane, exhibited superior dynamic mechanical properties, with G' ~70 kPa and G″ ~10 kPa, compared to those of the axial plane ~15 kPa and ~1 kPa, respectively. Fiber orientation did not affect the values of G, which ranged from ~50 to ~100 kPa.


Assuntos
Menisco , Anisotropia , Colágeno , Glicosaminoglicanos , Humanos , Meniscos Tibiais
2.
Front Bioeng Biotechnol ; 8: 622552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33644008

RESUMO

The meniscus is crucial in maintaining knee function and protecting the joint from secondary pathologies, including osteoarthritis. The meniscus has been shown to absorb up to 75% of the total load on the knee joint. Mechanical behavior of meniscal tissue in compression can be predicted by quantifying the mechanical parameters including; aggregate modulus (H) and Poisson modulus (ν), and the fluid transport parameter: hydraulic permeability (K). These parameters are crucial to develop a computational model of the tissue and for the design and development of tissue engineered scaffolds mimicking the native tissue. Hence, the objective of this study was to characterize the mechanical and fluid transport properties of human meniscus and relate them to the tissue composition. Specimens were prepared from the axial and the circumferential anatomical planes of the tissue. Stress relaxation tests yielded the H, while finite element modeling was used to curve fit for ν and K. Correlations of moduli with water and glycosaminoglycans (GAGs) content were investigated. On average H was found to be 0.11 ± 0.078 MPa, ν was 0.32 ± 0.057, and K was 2.9 ± 2.27 × 10-15 m4N-1s-1. The parameters H, ν, and K were not found to be statistically different across compression orientation or compression level. Water content of the tissue was 77 ± 3.3% while GAG content was 8.79 ± 1.1%. Interestingly, a weak negative correlation was found between H and water content (R2 ~ 34%) and a positive correlation between K and GAG content (R2 ~ 53%). In conclusion, while no significant differences in transport and compressive properties can be found across sample orientation and compression levels, data trends suggest potential relationships between magnitudes of H and K, and GAG content.

3.
Virus Res ; 244: 128-136, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29155138

RESUMO

The HPV16 E5 open reading frame (ORF) is present on the majority of all alternatively spliced HPV16 mRNAs, but it is currently unknown how well it is translated into E5 protein. To identify HPV16 mRNAs that are efficiently translated into E5, we have generated cDNA plasmids expressing individual, alternatively spliced HPV16 mRNAs with the potential to produce E5. By replacing the E5 ORF with sLuc, we could quantitate sLuc and determine how well each cDNA was translated. Our results showed that the upstream E1 and E7 AUGs inhibited translation of the E5 ORF and revealed that only one HPV16 mRNA produced high levels of E5. This was an HPV16 early mRNA spliced from SD226 to SA3358. These results were confirmed in the context of the entire HPV16 genome. Taken together, our results indicate that E5 is expressed early in the HPV16 replication cycle since it is translated efficiently only by one early mRNA.


Assuntos
Genoma Viral , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Splicing de RNA , RNA Mensageiro/genética , RNA Viral/genética , Sequência de Bases , Linhagem Celular Tumoral , Mapeamento Cromossômico , DNA Complementar/genética , DNA Complementar/metabolismo , Genes Reporter , Marcadores Genéticos , Células HEK293 , Células HeLa , Papillomavirus Humano 16/metabolismo , Humanos , Luciferases/genética , Luciferases/metabolismo , Mutação , Proteínas Oncogênicas Virais/biossíntese , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA