Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 221: 75-80, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38762060

RESUMO

DNA damage caused by oxidative reactions plays a crucial role in the pathogenesis of colorectal cancer (CRC). In a previous cross-sectional study, CRC patients diagnosed with regional disease (stage III) exhibited a higher level of DNA base oxidation in peripheral blood mononuclear cells (PBMCs) 2-9 months post-surgery compared to those with localized disease (stage I-II). To further explore this observation over time, the present study aimed to investigate DNA base oxidation in CRC patients with localized versus regional disease 6 and 12 months after the initial measurements. The present study included patients enrolled in the randomized controlled trial Norwegian Dietary Guidelines and Colorectal Cancer Survival (CRC-NORDIET). The standard comet assay, modified with the lesion-specific enzyme formamidopyrimidine DNA glycosylase (Fpg), was applied to measure DNA base oxidation in PBMCs at the 6- and 12-month follow-ups. Of the 255 patients assessed at baseline, 156 were included at the 6-month follow-up, with 89 of these patients included in the 12-month follow-up. In contrast to our observation at baseline, there were no significant differences in the levels of DNA base oxidation between patients diagnosed with localized disease and those with regional involvement at the 6- and 12-month follow-up visits (P = 0.81 and P = 0.09, respectively). Patients with stage III disease exhibited a significant decrease in the levels of DNA base oxidation from baseline to 6 months (P < 0.01) and baseline to 12 months (P = 0.03), but no significant difference from 6 to 12 months (P = 0.80). In conclusion, the initially elevated levels of DNA base oxidation in PBMCs, observed 2-9 months post-surgery in patients diagnosed with regional disease (stage III), subsequently decreased to levels comparable to patients with localized disease (stage I-II) at the 6- and 12-month follow-ups.


Assuntos
Neoplasias Colorretais , Dano ao DNA , Leucócitos Mononucleares , Oxirredução , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Leucócitos Mononucleares/metabolismo , Seguimentos , Estadiamento de Neoplasias , Estresse Oxidativo , Ensaio Cometa , DNA-Formamidopirimidina Glicosilase/metabolismo , DNA-Formamidopirimidina Glicosilase/genética , DNA/genética , DNA/metabolismo , Estudos Transversais
2.
Free Radic Biol Med ; 218: 178-189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588903

RESUMO

DNA repair is essential to maintain genomic integrity and may affect colorectal cancer (CRC) patients' risk of secondary cancers, treatment efficiency, and susceptibility to various comorbidities. Bioactive compounds identified in plant foods have the potential to modulate DNA repair mechanisms, but there is limited evidence of how dietary factors may affect DNA repair activity in CRC patients in remission after surgery. The aim of this study was to investigate the effect of a 6-month personalized intensive dietary intervention on DNA repair activity in post-surgery CRC patients (stage I-III). The present study included patients from the randomized controlled trial CRC-NORDIET, enrolled 2-9 months after surgery. The intervention group received an intensive dietary intervention emphasizing a prudent diet with specific plant-based foods suggested to dampen inflammation and oxidative stress, while the control group received only standard care advice. The comet-based in vitro repair assay was applied to assess DNA repair activity, specifically base excision repair (BER), in peripheral blood mononuclear cells (PBMCs). Statistical analyses were conducted using gamma generalized linear mixed models (Gamma GLMM). A total of 138 CRC patients were included, 72 from the intervention group and 66 from the control group. The BER activity in the intervention group did not change significantly compared to the control group. Our findings revealed a substantial range in both inter- and intra-individual levels of BER. In conclusion, the results do not support an effect of dietary intervention on BER activity in post-surgery CRC patients during a 6-month intervention period.


Assuntos
Neoplasias Colorretais , Reparo do DNA , Humanos , Neoplasias Colorretais/dietoterapia , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Estresse Oxidativo , Leucócitos Mononucleares/metabolismo , Medicina de Precisão/métodos , Dano ao DNA , Reparo por Excisão
3.
Free Radic Biol Med ; 212: 174-185, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141887

RESUMO

Accumulation of DNA damage is a critical feature of genomic instability, which is a hallmark of various cancers. The enzyme-modified comet assay is a recognized method to detect specific DNA lesions at the level of individual cells. In this cross-sectional investigation, we explore possible links between clinicopathological and treatment related factors, nutritional status, physical activity and function, and DNA damage in a cohort of colorectal cancer (CRC) patients with non-metastatic disease. Levels of DNA damage in peripheral mononuclear blood cells (PBMCs) assessed 2-9 months post-surgery, were compared across tumour stage (localized (stage I-II) vs. regional (stage III) disease), localization (colon vs. rectosigmoid/rectum cancer), and adjuvant chemotherapy usage, with the last dosage administrated 2-191 days prior to sampling. Associations between DNA damage and indicators of nutritional status, physical activity and function were also explored. In PBMCs, DNA base oxidation was higher in patients diagnosed with regional compared with localized tumours (P = 0.03), but no difference was seen for DNA strand breaks (P > 0.05). Number of days since last chemotherapy dosage was negatively associated with DNA base oxidation (P < 0.01), and patients recently receiving chemotherapy (<15 days before blood collection) had higher levels of DNA base oxidation than those not receiving chemotherapy (P = 0.03). In the chemotherapy group, higher fat mass (in kg and %) as well as lower physical activity were associated with greater DNA base oxidation (P < 0.05). In conclusion, DNA base oxidation measured with the enzyme-modified comet assay varies according to tumour and lifestyle related factors in CRC patients treated for non-metastatic disease.


Assuntos
Neoplasias Colorretais , Dano ao DNA , Humanos , Estudos Transversais , Ensaio Cometa , DNA/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia
4.
Cell Biol Toxicol ; 39(6): 2775-2786, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36932276

RESUMO

DNA repair is an essential agent in cancer development, progression, prognosis, and response to therapy. We have adapted a cellular repair assay based on the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay to assess DNA repair kinetics. The removal of oxidized nucleobases over time (0-480 min) was analyzed in peripheral blood mononuclear cells (PBMCs) and 8 cell lines. DNA damage was induced by exposure to either Ro19-8022 plus visible light or potassium bromate (KBrO3). The initial amount of damage induced by Ro 19-8022 plus light varied between cell lines, and this was apparently associated with the rate of repair. However, the amount of DNA damage induced by KBrO3 varied less between cell types, so we used this agent to study the kinetics of DNA repair. We found an early phase of ca. 60 min with fast removal of Fpg-sensitive sites, followed by slower removal over the following 7 h. In conclusion, adjusting the initial damage at T0 to an equal level can be achieved by the use of KBrO3, which allows for accurate analysis of subsequent cellular DNA repair kinetics in the first hour after exposure.


Assuntos
Reparo do DNA , Leucócitos Mononucleares , DNA-Formamidopirimidina Glicosilase/metabolismo , Ensaio Cometa , Dano ao DNA
5.
Br J Nutr ; 128(6): 1064-1071, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34749837

RESUMO

Obesity is associated with increased muscle mass and muscle strength. Methods taking into account the total body mass to reveal obese older individuals at increased risk of functional impairment are needed. Therefore, we aimed to detect methods to identify obese older adults at increased risk of functional impairment. Home-dwelling older adults (n 417, ≥ 70 years of age) were included in this cross-sectional study. Sex-specific cut-off points for two obesity phenotypes (waist circumference (WC) and body fat mass (FM %)) were used to divide women and men into obese and non-obese groups, and within-sex comparisons were performed. Obese women and men, classified by both phenotypes, had similar absolute handgrip strength (HGS) but lower relative HGS (HGS/total body mass) (P < 0·001) than non-obese women and men, respectively. Women with increased WC and FM %, and men with increased WC had higher appendicular skeletal muscle mass (P < 0·001), lower muscle quality (HGS/upper appendicular muscle mass) (P < 0·001), and spent longer time on the stair climb test and the repeated sit-to-stand test (P < 0·05) than non-obese women and men, respectively. Absolute muscle strength was not able to discriminate between obese and non-obese older adults. However, relative muscle strength in particular, but also muscle quality and physical performance tests, where the total body mass was taken into account or served as an extra load, identified obese older adults at increased risk of functional impairment. Prospective studies are needed to determine clinically relevant cut-off points for relative HGS in particular.


Assuntos
Força da Mão , Sarcopenia , Masculino , Feminino , Humanos , Força da Mão/fisiologia , Estudos Transversais , Força Muscular/fisiologia , Obesidade/epidemiologia , Estudos Prospectivos , Sarcopenia/diagnóstico , Músculo Esquelético
6.
J Int Soc Sports Nutr ; 14: 43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200982

RESUMO

BACKGROUND: Protein intake is essential to maximally stimulate muscle protein synthesis, and the amino acid leucine seems to possess a superior effect on muscle protein synthesis compared to other amino acids. Native whey has higher leucine content and thus a potentially greater anabolic effect on muscle than regular whey (WPC-80). This study compared the acute anabolic effects of ingesting 2 × 20 g of native whey protein, WPC-80 or milk protein after a resistance exercise session. METHODS: A total of 24 young resistance trained men and women took part in this double blind, randomized, partial crossover, controlled study. Participants received either WPC-80 and native whey (n = 10), in a crossover design, or milk (n = 12). Supplements were ingested immediately (20 g) and two hours after (20 g) a bout of heavy-load lower body resistance exercise. Blood samples and muscle biopsies were collected to measure plasma concentrations of amino acids by gas-chromatography mass spectrometry, muscle phosphorylation of p70S6K, 4E-BP1 and eEF-2 by immunoblotting, and mixed muscle protein synthesis by use of [2H5]phenylalanine-infusion, gas-chromatography mass spectrometry and isotope-ratio mass spectrometry. Being the main comparison, differences between native whey and WPC-80 were analysed by a one-way ANOVA and comparisons between the whey supplements and milk were analysed by a two-way ANOVA. RESULTS: Native whey increased blood leucine concentrations more than WPC-80 and milk (P < 0.05). Native whey ingestion induced a greater phosphorylation of p70S6K than milk 180 min after exercise (P = 0.03). Muscle protein synthesis rates increased 1-3 h hours after exercise with WPC-80 (0.119%), and 1-5 h after exercise with native whey (0.112%). Muscle protein synthesis rates were higher 1-5 h after exercise with native whey than with milk (0.112% vs. 0.064, P = 0.023). CONCLUSIONS: Despite higher-magnitude increases in blood leucine concentrations with native whey, it was not superior to WPC-80 concerning effect on muscle protein synthesis and phosphorylation of p70S6K during a 5-h post-exercise period. Native whey increased phosphorylation of p70S6K and muscle protein synthesis rates to a greater extent than milk during the 5-h post exercise period. TRIAL REGISTRATION: This study was retrospectively registered at clinicaltrials.gov as NCT02968888.


Assuntos
Suplementos Nutricionais , Leucina/análise , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Leucina/farmacologia , Masculino , Proteínas Musculares/biossíntese , Músculo Esquelético/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...