Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174622, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992359

RESUMO

Climate- and land-use change stand as primary threats to terrestrial biodiversity. Yet, their synergistic impacts on species distributions remain poorly understood. To address this knowledge gap, we conducted the first-ever comprehensive species distribution analysis on an entire regional endemism centre within an eastern Mediterranean country, incorporating dynamic land-use/land-cover change data together with climate change scenarios. Specifically, we apply species distribution modelling and spatial data analysis techniques to compare the individual and synergistic effects of these environmental drivers on the endemic vascular flora of Peloponnese, focusing on potential range contractions, altitudinal shifts, and habitat fragmentation levels. Moreover, we identify fine-scale present and potential future endemism hotspots within our study area, incorporating taxonomic and phylogenetic information. Overall, we aim to enhance our current understanding of endemism patterns and contribute to the development of future-proof conservation strategies for safeguarding Greece's endangered endemic flora. The integration of land-use change projections with climate change yielded less severe impacts compared to the effects anticipated when considering climatic variables alone. Most taxa are expected to undergo significant range declines and nearly half might experience increased habitat fragmentation, due to the synergistic effects of climate- and land-use change. We identified endemism hotspots, which are concentrated in or along the main Peloponnesian mountain massifs. However, our predictions indicate that areas presently recognized as endemism hotspots will undergo a concerning area decline, across all future scenarios considered in this study. Our findings highlight the importance of including dynamic land-use variables alongside climatic predictors when projecting species distributions under global change. Moreover, we showed that endemism hotspots are not static and considering their potential geographic shifts is paramount to delineate effective forward-looking conservation strategies.

2.
Interface Focus ; 13(1): 20220056, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36655193

RESUMO

Northwestern Amazonia is home to a great degree of linguistic diversity, and the human societies in that region are part of complex networks of interaction that predate the arrival of Europeans. This study investigates the population and language contact dynamics between two languages found within this region, Yukuna and Tanimuka, which belong to the Arawakan and Tukanoan language families, respectively. We use evidence from linguistics, ethnohistory, ethnography and population genetics to provide new insights into the contact dynamics between these and other human groups in NWA. Our results show that the interaction between these groups intensified in the last 500 years, to the point that it is difficult to differentiate between them genetically. However, this close interaction has led to more substantial contact-induced language changes in Tanimuka than in Yukuna, consistent with a scenario of language shift and asymmetrical power relations.

3.
Interface Focus ; 13(1): 20220054, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36655194

RESUMO

The Americas are home to patches of extraordinary linguistic (genealogical) diversity. These high-diversity areas are particularly unexpected given the recent population of the Americas. In this paper, we zoom in on one such area, the Northwest Amazon, and address the question of how the diversity in this area has persisted to the present. We contrast two hypotheses that claim opposite mechanisms for the maintenance of diversity: the isolation hypothesis suggests that isolation facilitates the preservation of diversity, while the integration hypothesis proposes that conscious identity preservation in combination with contact drives diversity maintenance. We test predictions for both hypotheses across four disciplines: biogeography, cultural anthropology, population genetics and linguistics. Our results show signs of both isolation and integration, but they mainly suggest considerable diversity in how groups of speakers have interacted with their surroundings.

4.
Glob Ecol Biogeogr ; 31(11): 2162-2171, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36606261

RESUMO

Motivation: Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130 m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained: The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea levels <140 m) are presented, showing the extent of land (1), shelf sea (0) and deep sea (NULL) per time step of 0.5 kyr from 26 ka to the present. Spatial location and grain: The coastline age raster and shelf sea rasters have a global representation. The spatial resolution is scaled to 120 arcsec (0.333° × 0.333°), implying cells of c. 3,704 m around the equator, 3,207 m around the tropics (±30°) and 1,853 m in the temperate zone (±60°). Time period and temporal resolution: The coastline age raster shows the age of coastline positions since the onset of the LGM 26 ka, with time steps of 0.5 kyr. The 53 shelf sea rasters show, for each time step of 0.5 kyr, the position of the shelf seas (seas shallower than 140 m) and the extent of land. Level of measurement: Both the coastline age raster and the 53 shelf sea rasters are provided as TIFF files with spatial reference system WGS84 (SRID 4326). The values of the coastline age raster per grid cell correspond to the most recent coastline position (in steps of 0.5 kyr). Values range from 0 (0 ka, i.e., present day) to 260 (26 ka) in bins of 5 (0.5 kyr). A value of "no data" is ascribed to pixels that have remained below sea level since 26 ka. Software format: All data processing was done using the R programming language.

5.
Glob Ecol Conserv ; 31: e01847, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34761079

RESUMO

Despite islands contributing only 6.7% of land surface area, they harbor ~20% of the Earth's biodiversity, but unfortunately also ~50% of the threatened species and 75% of the known extinctions since the European expansion around the globe. Due to their geological and geographic history and characteristics, islands act simultaneously as cradles of evolutionary diversity and museums of formerly widespread lineages-elements that permit islands to achieve an outstanding endemicity. Nevertheless, the majority of these endemic species are inherently vulnerable due to genetic and demographic factors linked with the way islands are colonized. Here, we stress the great variation of islands in their physical geography (area, isolation, altitude, latitude) and history (age, human colonization, human density). We provide examples of some of the most species rich and iconic insular radiations. Next, we analyze the natural vulnerability of the insular biota, linked to genetic and demographic factors as a result of founder events as well as the typically small population sizes of many island species. We note that, whereas evolution toward island syndromes (including size shifts, derived insular woodiness, altered dispersal ability, loss of defense traits, reduction in clutch size) might have improved the ability of species to thrive under natural conditions on islands, it has simultaneously made island biota disproportionately vulnerable to anthropogenic pressures such as habitat loss, overexploitation, invasive species, and climate change. This has led to the documented extinction of at least 800 insular species in the past 500 years, in addition to the many that had already gone extinct following the arrival of first human colonists on islands in prehistoric times. Finally, we summarize current scientific knowledge on the ongoing biodiversity loss on islands worldwide and express our serious concern that the current trajectory will continue to decimate the unique and irreplaceable natural heritage of the world's islands. We conclude that drastic actions are urgently needed to bend the curve of the alarming rates of island biodiversity loss.

6.
Ecol Evol ; 11(10): 5441-5458, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026019

RESUMO

Recent research in island biogeography has highlighted the important role of late Quaternary sea-level fluctuations in shaping biogeographic patterns in insular systems but focused on oceanic systems. Through this study, we aim investigate how late Quaternary sea-level fluctuations shaped species richness patterns in continental-shelf island systems. Focusing on the Aegean archipelago, we first compiled maps of the area's geography using published data, under three sea-level stands: (a) current; (b) median sea-level over the last nine glacial-interglacial cycles (MSL); and (c) Last Glacial Maximum (LGM). We gathered taxon-island occurrences for multiple chorotypes of angiosperms, butterflies, centipedes, and reptiles. We investigated the impact of present-day and past geographic settings on chorological groups by analyzing island species-area relationships (ISARs) and using generalized linear mixed models (GLMMs) selection based on multiple metrics of goodness of fit. Our results confirm that the Aegean's geography has changed dramatically since the LGM, whereas the MSL only modestly differs from the present configuration. Apart for centipedes, paleogeographic changes affected both native and endemic species diversity through altering connections between land-bridge islands and the mainland. On land-bridge islands, we detected over-representation of native species and under-representation of endemics. Unlike oceanic islands, sea-level-driven increase of isolation and area contraction did not strongly shape patterns of species richness. Furthermore, the LGM configurations rather than the MSL configuration shaped patterns of endemic species richness. This suggests that even short episodes of increased connectivity with continental populations are sufficient to counteract the genetic differentiation of insular populations. On the other hand, the over-representation of native nonendemic species on land-bridge islands reflected MSL rather than LGM mainland connections. Our study shows that in terms of processes affecting species richness patterns, continental archipelagos differ fundamentally from oceanic systems because episodic connections with the mainland have profound effects on the biota of land-bridge islands.

7.
Science ; 372(6541): 488-491, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926949

RESUMO

Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.


Assuntos
Biodiversidade , Atividades Humanas , Ilhas , Humanos , Pólen
8.
Ecol Lett ; 18(2): 200-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25560682

RESUMO

The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, 'An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re-assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution - understanding ecosystem functioning, speciation and diversification - frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island-based theory is continually being enriched, incorporating non-equilibrium dynamics is identified as a major challenge for the future.


Assuntos
Evolução Biológica , Ilhas , Modelos Biológicos , Biodiversidade , Ecologia , Ecossistema , Fluxo Gênico , Especiação Genética , Geografia , Dinâmica Populacional , Isolamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...