Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567642

RESUMO

Introduction. Staphylococcus aureus is the leading cause of acute medical implant infections, representing a significant modern medical concern. The success of S. aureus as a pathogen in these cases resides in its arsenal of virulence factors, resistance to multiple antimicrobials, mechanisms of immune modulation, and ability to rapidly form biofilms associated with implant surfaces. S. aureus device-associated, biofilm-mediated infections are often persistent and notoriously difficult to treat, skewing innate immune responses to promote chronic reoccurring infections. While relatively little is known of the role neutrophils play in response to acute S. aureus biofilm infections, these effector cells must be efficiently recruited to sites of infection via directed chemotaxis. Here we investigate the effects of modulating CXC chemokine receptor 2 (CXCR2) activity, predominantly expressed on neutrophils, during S. aureus implant-associated infection.Hypothesis. We hypothesize that modulation of CXCR2 expression and/or signalling activities during S. aureus infection, and thus neutrophil recruitment, extravasation and antimicrobial activity, will affect infection control and bacterial burdens in a mouse model of implant-associated infection.Aim. This investigation aims to elucidate the impact of altered CXCR2 activity during S. aureus biofilm-mediated infection that may help develop a framework for an effective novel strategy to prevent morbidity and mortality associated with implant infections.Methodology. To examine the role of CXCR2 during S. aureus implant infection, we employed a mouse model of indwelling subcutaneous catheter infection using a community-associated methicillin-resistant S. aureus (MRSA) strain. To assess the role of CXCR2 induction or inhibition during infection, treatment groups received daily intraperitoneal doses of either Lipocalin-2 (Lcn2) or AZD5069, respectively. At the end of the study, catheters and surrounding soft tissues were analysed for bacterial burdens and dissemination, and Cxcr2 transcription within the implant-associated tissues was quantified.Results. Mice treated with Lcn2 developed higher bacterial burdens within the soft tissue surrounding the implant site, which was associated with increased Cxcr2 expression. AZD5069 treatment also resulted in increased implant- and tissues-associated bacterial titres, as well as enhanced Cxcr2 expression.Conclusion. Our results demonstrate that CXCR2 plays an essential role in regulating the severity of S. aureus implant-associated infections. Interestingly, however, perturbation of CXCR2 expression or signalling both resulted in enhanced Cxcr2 transcription and elevated implant-associated bacterial burdens. Thus, CXCR2 appears finely tuned to efficiently recruit effector cells and mediate control of S. aureus biofilm-mediated infection.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pirimidinas , Infecções Estafilocócicas , Sulfonamidas , Camundongos , Animais , Staphylococcus aureus/fisiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Receptores de Interleucina-8B/genética , Infecções Estafilocócicas/microbiologia , Biofilmes
2.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G3-G15, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874654

RESUMO

Concentrated animal feeding operations (CAFOs) are responsible for the production of global greenhouse gases and harmful environmental pollutants including hydrogen sulfide, ammonia, and particulate matter. Swine farmers are frequently exposed to organic dust that is proinflammatory in the lung and are thus at greater risk of developing pneumonia, asthma, and other respiratory conditions. In addition to respiratory disease, air pollutants are directly associated with altered gastrointestinal (GI) physiology and the development of GI diseases, thereby highlighting the gut-lung axis in disease progression. Instillation of hog dust extract (HDE) for 3 wk has been reported to promote the development of chronic airway inflammation in mice, however, the impact of HDE exposure on intestinal homeostasis is poorly understood. We report that 3-wk intranasal exposure of HDE is associated with increased intestinal macromolecule permeability and elevated serum endotoxin concentrations in C57BL/6J mice. In vivo studies also indicated mislocalization of the epithelial cell adhesion protein, E-cadherin, in the colon as well as an increase in the proinflammatory cytokine, Tnfα, in the proximal colon. Moreover, mRNA expression of the Paneth cell-associated marker, Lyz1, was increased the proximal colon, whereas the expression of the goblet cell marker, Muc2, was unchanged in the epithelial cells of the ileum, cecum, and distal colon. These results demonstrate that airway exposure to CAFOs dusts promote airway inflammation and modify the gastrointestinal tract to increase intestinal permeability, induce systemic endotoxemia, and promote intestinal inflammation. Therefore, this study identifies complex physiological consequences of chronic exposure to organic dusts derived from CAFOs on the gut-lung axis.NEW & NOTEWORTHY Agricultural workers have a higher prevalence of occupational respiratory symptoms and are at greater risk of developing respiratory diseases. However, gastrointestinal complications have also been reported, yet the intestinal pathophysiology is understudied. This work is novel because it emphasizes the role of an inhaled environmental pollutant on the development of intestinal pathophysiological outcomes. This work will provide foundation for other studies evaluating how agricultural dusts disrupts host physiology and promotes debilitating gastrointestinal and systemic disorders.


Assuntos
Poeira , Endotoxemia , Camundongos , Animais , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Inflamação
3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108233

RESUMO

The role of pulmonary free fatty acid receptor 4 (FFAR4) is not fully elucidated and we aimed to clarify the impact of FFAR4 on the pulmonary immune response and return to homeostasis. We employed a known high-risk human pulmonary immunogenic exposure to extracts of dust from swine confinement facilities (DE). WT and Ffar4-null mice were repetitively exposed to DE via intranasal instillation and supplemented with docosahexaenoic acid (DHA) by oral gavage. We sought to understand if previous findings of DHA-mediated attenuation of the DE-induced inflammatory response are FFAR4-dependent. We identified that DHA mediates anti-inflammatory effects independent of FFAR4 expression, and that DE-exposed mice lacking FFAR4 had reduced immune cells in the airways, epithelial dysplasia, and impaired pulmonary barrier integrity. Analysis of transcripts using an immunology gene expression panel revealed a role for FFAR4 in lungs related to innate immune initiation of inflammation, cytoprotection, and immune cell migration. Ultimately, the presence of FFAR4 in the lung may regulate cell survival and repair following immune injury, suggestive of potential therapeutic directions for pulmonary disease.


Assuntos
Ácidos Docosa-Hexaenoicos , Receptores Acoplados a Proteínas G , Humanos , Animais , Camundongos , Suínos , Ácidos Docosa-Hexaenoicos/farmacologia , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Pulmão/metabolismo , Suplementos Nutricionais , Inflamação , Camundongos Knockout
4.
Sci Rep ; 13(1): 2767, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797300

RESUMO

Dietary long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) and their pro-resolving metabolites are protective against atherosclerotic disease, and ameliorate systemic inflammatory conditions including lupus erythematosus, psoriasis, and bronchial asthma. Organic bioaerosol inhalation is a common and injurious hazard associated with agricultural occupations such as work in swine concentrated animal feeding operations (CAFOs) and is known to increase the risk for developing respiratory conditions such as asthma and COPD. Nearly all cells secrete membrane-bound vesicles (extracellular vesicles, EVs) that have the capacity to transmit protein, nucleic acid, and lipid signaling mediators between cells. Using a polymer-based isolation technique (ExoQuick, PEG) followed by ultracentrifugation, EVs were isolated from CAFO dust extracts, and were quantified and partially characterized. Here, we investigated the role of the n-3 PUFA docosahexaenoic acid (DHA) as a component of n-6 to n-3 PUFA mixtures used to recapitulate physiologically relevant dietary ratios in the resolution of inflammatory injury caused by exposure to EVs carried by agricultural organic dust in vitro. Primary human bronchial epithelial cells, fibroblasts and monocyte-derived macrophages were exposed to EVs isolated from swine CAFO dust. Cells were treated with mixtures of n-6 and n-3 PUFA during recovery from the EV-induced injury. CAFO dust extract (DE) was found to contain EVs that contributed significantly to the overall consequences of exposure to complete DE. DHA-rich PUFA ratios inhibited DE-derived EV-induced proinflammatory cytokine release dose-dependently. DHA-rich PUFA ratios also reversed the damaging effects of EVs on recellularization of lung matrix scaffolds, accelerated wound healing, and stimulated the release of pro-resolution mediators. These results underscore the importance of n-3 PUFA as anti-inflammatory compounds during recovery from EV-laden environmental dust exposure in the context of cellular responses in vitro, warranting future translational studies.


Assuntos
Vesículas Extracelulares , Ácidos Graxos Ômega-3 , Humanos , Animais , Suínos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Vesículas Extracelulares/metabolismo , Poeira
5.
Biomedicines ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672679

RESUMO

Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38711421

RESUMO

Soil-transmitted helminth (STH) infections impact billions of individuals globally; however, there is a need to clarify the long-term impacts of these infections on pulmonary health owing to their transient migration and subsequent damage to the lungs. In mouse models of these infections using Nippostrongylus brasiliensis, lung pathology persists at later time points post single infection. These studies also indicate the persistent transcriptional expression of resistin-like molecule α (RELMα), an immunomodulatory protein induced in type 2 immunity and alternatively activated macrophages. Using constitutive and tamoxifen-inducible cell-specific RELMα knockout mouse strains, we identified that epithelial- and myeloid-derived RELMα protein remained elevated at 30 days post infection and altered the immune cell signature and gene expression in lung compartments. Histopathological assessment of alveolar damage revealed a role for RELMα in tissue repair, suggesting the importance of sustained RELMα expression for lung recovery from helminth infection. Acellular three-dimensional (3D) lung scaffolds were prepared from the lungs of wild-type (WT), RELMα KO-naive, or 30 days post N. brasiliensis-infected mice to assess their ability to support epithelial cell growth. N. brasiliensis infection significantly altered the scaffold and impaired epithelial cell growth and metabolic activity, especially in the RELMα KO scaffolds. These findings underscore a need to identify the long-term impacts of helminth infection on human pulmonary disease, particularly as alveolar destruction can develop into chronic obstructive pulmonary disease (COPD), which remains among the top global causes of death. Translation of these findings to human protein resistin, with sequence homology to RELMα therapeutic opportunities in lung repair.

7.
Physiol Rep ; 10(19): e15466, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36207795

RESUMO

Pulmonary diseases alter lung mechanical properties, can cause loss of function, and necessitate use of mechanical ventilation, which can be detrimental. Investigations of lung tissue (local) scale mechanical properties are sparse compared to that of the whole organ (global) level, despite connections between regional strain injury and ventilation. We examine ex vivo mouse lung mechanics by investigating strain values, local compliance, tissue surface heterogeneity, and strain evolutionary behavior for various inflation rates and volumes. A custom electromechanical, pressure-volume ventilator is coupled with digital image correlation to measure regional lung strains and associate local to global mechanics by analyzing novel pressure-strain evolutionary measures. Mean strains at 5 breaths per minute (BPM) for applied volumes of 0.3, 0.5, and 0.7 ml are 5.0, 7.8, and 11.3%, respectively, and 4.7, 8.8, and 12.2% for 20 BPM. Similarly, maximum strains among all rate and volume combinations range 10.7%-22.4%. Strain values (mean, range, mode, and maximum) at peak inflation often exhibit significant volume dependencies. Additionally, select evolutionary behavior (e.g., local lung compliance quantification) and tissue heterogeneity show significant volume dependence. Rate dependencies are generally found to be insignificant; however, strain values and surface lobe heterogeneity tend to increase with increasing rates. By quantifying strain evolutionary behavior in relation to pressure-volume measures, we associate time-continuous local to global mouse lung mechanics for the first time and further examine the role of volume and rate dependency. The interplay of multiscale deformations evaluated in this work can offer insights for clinical applications, such as ventilator-induced lung injury.


Assuntos
Respiração Artificial , Mecânica Respiratória , Animais , Pulmão , Complacência Pulmonar , Medidas de Volume Pulmonar , Camundongos , Respiração Artificial/métodos , Volume de Ventilação Pulmonar
8.
Toxicol Appl Pharmacol ; 446: 116044, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525330

RESUMO

IL-22 is a unique cytokine that is upregulated in many chronic inflammatory diseases, including asthma, and modulates tissue responses during inflammation. However, the role of IL-22 in the resolution of inflammation and how this contributes to lung repair processes are largely unknown. Here, we tested the hypothesis that IL-22 signaling is critical in inflammation resolution after repetitive exposure to agricultural dust. Using an established mouse model of organic dust extract-induced lung inflammation, we found that IL-22 knockout mice have an enhanced response to agricultural dust as evidenced by an exacerbated increase in infiltrating immune cells and lung pathology as compared to wild-type controls. We further identified that, in response to dust, IL-22 is expressed in airway epithelium and in Ym1+ macrophages found within the parenchyma in response to dust. The increase in IL-22 expression was accompanied by increases in IL-22 receptor IL-22R1 within the lung epithelium. In addition, we found that alveolar macrophages in vivo as well as THP-1 cells in vitro express IL-22, and this expression is modulated by dust exposure. Furthermore, subcellular localization of IL-22 appears to be in the Golgi of resting THP1 human monocytes, and treatment with dust extracts is associated with IL-22 release into the cytosolic compartment from the Golgi reservoirs during dust extract exposure. Taken together, we have identified a significant role for macrophage-mediated IL-22 signaling that is activated in dust-induced lung inflammation in mice.


Assuntos
Poeira , Reação a Corpo Estranho , Interleucinas , Pneumonia , Agricultura , Animais , Reação a Corpo Estranho/metabolismo , Inflamação/metabolismo , Interleucinas/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Interleucina 22
9.
Cancers (Basel) ; 14(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454807

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide, with increased risk being associated with unresolved or chronic inflammation. Agricultural and livestock workers endure significant exposure to agricultural dusts on a routine basis; however, the chronic inflammatory and carcinogenic effects of these dust exposure is unclear. We have developed a chronic dust exposure model of lung carcinogenesis in which mice were intranasally challenged three times a week for 24 weeks, using an aqueous dust extract (HDE) made from dust collected in swine confinement facilities. We also treated mice with the omega-3-fatty acid lipid mediator, aspirin-triggered resolvin D1 (AT-RvD1) to provide a novel therapeutic strategy for mitigating the inflammatory and carcinogenic effects of HDE. Exposure to HDE resulted in significant immune cell influx into the lungs, enhanced lung tumorigenesis, severe tissue pathogenesis, and a pro-inflammatory and carcinogenic gene signature, relative to saline-exposed mice. AT-RvD1 treatment mitigated the dust-induced inflammatory response but did not protect against HDE + NNK-enhanced tumorigenesis. Our data suggest that chronic HDE exposure induces a significant inflammatory and pro-carcinogenic response, whereas treatment with AT-RvD1 dampens the inflammatory responses, providing a strong argument for the therapeutic use of AT-RvD1 to mitigate chronic inflammation.

10.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054892

RESUMO

Omega-3 and omega-6 fatty acids are important for neonatal development and health. One mechanism by which omega-3 and omega-6 fatty acids exert their effects is through their metabolism into oxylipins and specialized pro-resolving mediators. However, the influence of oxylipins on fetal growth is not well understood. Therefore, the objective of this study was to identify oxylipins present in maternal and umbilical cord plasma and investigate their relationship with infant growth. Liquid chromatography-tandem mass spectrometry was used to quantify oxylipin levels in plasma collected at the time of delivery. Spearman's correlations highlighted significant correlations between metabolite levels and infant growth. They were then adjusted for maternal obesity (normal body mass index (BMI: ≤30 kg/m2) vs. obese BMI (>30 kg/m2) and smoking status (never vs. current/former smoker) using linear regression modeling. A p-value < 0.05 was considered statistically significant. Our study demonstrated a diverse panel of oxylipins from the lipoxygenase pathway present at the time of delivery. In addition, both omega-3 and omega-6 oxylipins demonstrated potential influences on the birth length and weight percentiles. The oxylipins present during pregnancy may influence fetal growth and development, suggesting potential metabolites to be used as biomarkers for infant outcomes.


Assuntos
Lipoxigenases/metabolismo , Obesidade/metabolismo , Oxilipinas/sangue , Cordão Umbilical/metabolismo , Adulto , Cromatografia Líquida , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Recém-Nascido , Obesidade/sangue , Oxilipinas/análise , Oxilipinas/metabolismo , Gravidez , Espectrometria de Massas em Tandem
11.
J Pathol Inform ; 12: 40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881095

RESUMO

BACKGROUND: QuPath is an open-source digital image analyzer notable for its user-friendly design, cross-platform compatibility, and customizable functionality. Since it was first released in 2016, at least 624 publications have reported its use, and it has been applied in a wide spectrum of settings. However, there are currently limited reports of its use in placental tissue. Here, we present the use of QuPath to quantify staining of G-protein coupled receptor 18 (GPR18), the receptor for the pro-resolving lipid mediator Resolvin D2, in placental tissue. METHODS: Whole slide images of vascular smooth muscle (VSM) and extravillous trophoblast (EVT) cells stained for GPR18 were annotated for areas of interest. Visual scoring was performed on these images by trained and in-training pathologists, while QuPath scoring was performed with the methodology described herein. RESULTS: Bland-Altman analyses showed that, for the VSM category, the two methods were comparable across all staining levels. For EVT cells, the high-intensity staining level was comparable across methods, but the medium and low staining levels were not comparable. CONCLUSIONS: Digital image analysis programs offer great potential to revolutionize pathology practice and research by increasing accuracy and decreasing the time and cost of analysis. Careful study is needed to optimize this methodology further.

12.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L726-L733, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468208

RESUMO

Lipocalin-2 (LCN2) is an inflammatory mediator best known for its role as an innate acute-phase protein. LCN2 mediates the innate immune response to pathogens by sequestering iron, thereby inhibiting pathogen growth. Although LCN2 and its bacteriostatic properties are well studied, other LCN2 functions in the immune response to inflammatory stimuli are less well understood, such as its role as a chemoattractant and involvement in the regulation of cell migration and apoptosis. In the lungs, most studies thus far investigating the role of LCN2 in the immune response have looked at pathogenic inflammatory stimuli. Here, we compile data that explore the role of LCN2 in the immune response to various inflammatory stimuli in an effort to differentiate between protective versus detrimental roles of LCN2.


Assuntos
Imunidade Inata/imunologia , Mediadores da Inflamação/metabolismo , Lipocalina-2/metabolismo , Pneumonia/patologia , Animais , Apoptose/fisiologia , Bactérias/crescimento & desenvolvimento , Movimento Celular/fisiologia , Humanos , Inflamação/patologia , Ferro/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia
13.
J Inflamm Res ; 14: 4035-4052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456580

RESUMO

PURPOSE: The Salton Sea, California's largest lake, is designated as an agricultural drainage reservoir. In recent years, the lake has experienced shrinkage due to reduced water sources, increasing levels of aerosolized dusts in surrounding regions. Communities surrounding the Salton Sea have increased asthma prevalence versus the rest of California; however, a connection between dust inhalation and lung health impacts has not been defined. METHODS: We used an established intranasal dust exposure murine model to study the lung inflammatory response following single or repetitive (7-day) exposure to extracts of dusts collected in regions surrounding the Salton Sea (SSDE), complemented with in vitro investigations assessing SSDE impacts on the airway epithelium. RESULTS: In these investigations, single or repetitive SSDE exposure induced significant lung inflammatory cytokine release concomitant with neutrophil influx. Repetitive SSDE exposure led to significant lung eosinophil recruitment and altered expression of genes associated with allergen-mediated immune response, including Clec4e. SSDE treatment of human bronchial epithelial cells (BEAS-2B) induced inflammatory cytokine production at 5- and 24-hours post-treatment. When BEAS-2B were exposed to protease activity-depleted SSDE (PDSSDE) or treated with SSDE in the context of protease-activated receptor-1 and -2 antagonism, inflammatory cytokine release was decreased. Furthermore, repetitive exposure to PDSSDE led to decreased neutrophil and eosinophilic influx and IL-6 release in mice compared to SSDE-challenged mice. CONCLUSION: These investigations demonstrate potent lung inflammatory responses and tissue remodeling in response to SSDE, in part due to environmental proteases found within the dusts. These studies provide the first evidence supporting a link between environmental dust exposure, protease-mediated immune activation, and respiratory disease in the Salton Sea region.

14.
J Nutr Biochem ; 97: 108797, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34126202

RESUMO

Agricultural workers, especially those who work in swine confinement facilities, are at increased risk for developing pulmonary diseases including asthma, chronic obstructive pulmonary disease, and chronic bronchitis due to exposures to fumes, vapors, and organic dust. Repetitive exposure to agricultural dust leads to unresolved inflammation, a common underlying mechanism that worsens lung disease. Besides occupational exposure to dusts, diet also significantly contributes to inflammation and disease progression. Since DHA (docosahexaenoic acid), a polyunsaturated omega-3 fatty acid and its bioactive metabolites have key roles in inflammation resolution, we rationalized that individuals chronically exposed to organic dusts can benefit from dietary modifications. Here, we evaluated the role of DHA in modifying airway inflammation in a murine model of repetitive exposure to an aqueous extract of agricultural dust (three-week exposure to swine confinement dust extract, HDE) and after a one-week resolution/recovery period. We found that mice fed a high DHA diet had significantly increased bronchoalveolar lavage fluid (BALF) levels of DHA-derived resolvins and lower TNFα along with altered plasma levels of endocannabinoids and related lipid mediators. Following the one-week recovery we identified significantly reduced BALF cellularity and cytokine/chemokine release along with increased BALF amphiregulin and resolvins in DHA diet-fed versus control diet-fed mice challenged with HDE. We further report observations on the effects of repetitive HDE exposure on lung Ym1+ and Arg-1+ macrophages. Overall, our findings support a protective role for DHA and identify DHA-derived resolvins and endocannabinoids among the potential mediators of DHA in altering airway inflammation in chronic agricultural dust exposure.


Assuntos
Dieta , Ácidos Docosa-Hexaenoicos/administração & dosagem , Poeira , Exposição por Inalação/efeitos adversos , Doenças Respiratórias/dietoterapia , Doenças dos Trabalhadores Agrícolas/dietoterapia , Doenças dos Trabalhadores Agrícolas/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Endocanabinoides/sangue , Ácidos Graxos Insaturados/sangue , Inflamação/dietoterapia , Inflamação/patologia , Pulmão/patologia , Macrófagos Alveolares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Respiratórias/patologia , Suínos , Fator de Necrose Tumoral alfa/metabolismo
15.
Cannabis Cannabinoid Res ; 6(3): 242-252, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33998896

RESUMO

Introduction: Over 1 billion humans carry infectious helminth parasites that can lead to chronic comorbidities such as anemia and growth retardation in children. Helminths induce a T-helper type 2 (Th2) immune response in the host and can cause severe tissue damage and fibrosis if chronic. We recently reported that mice infected with the soil-transmitted helminth, Nippostrongylus brasiliensis, displayed elevated levels of endocannabinoids (eCBs) in the lung and intestine. eCBs are lipid-signaling molecules that control inflammation; however, their function in infection is not well defined. Materials and Methods: A combination of pharmacological approaches and genetic mouse models was used to investigate roles for the eCB system in inflammatory responses and lung injury in mice during parasitic infection with N. brasiliensis. Results: Hemorrhaging of lung tissue in mice infected with N. brasiliensis was exacerbated by inhibiting peripheral cannabinoid receptor subtype-1 (CB1Rs) with the peripherally restricted CB1R antagonist, AM6545. In addition, these mice exhibited an increase in nonfunctional alveolar space and prolonged airway eosinophilia compared to vehicle-treated infected mice. In contrast to mice treated with AM6545, infected cannabinoid receptor subtype-2-null mice (Cnr2-/-) did not display any changes in these parameters compared to wild-type mice. Conclusions: Roles for the eCB system in Th2 immune responses are not well understood; however, increases in its activity in response to infection suggest an immunomodulatory role. Moreover, these findings suggest a role for eCB signaling at CB1Rs but not cannabinoid receptor subtypes-2 in the resolution of Th2 inflammatory responses, which become host destructive over time.


Assuntos
Endocanabinoides/imunologia , Pulmão/patologia , Nippostrongylus/imunologia , Receptor CB1 de Canabinoide/imunologia , Infecções por Strongylida/imunologia , Animais , Eosinofilia , Hemorragia , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/deficiência , Células Th2/imunologia
16.
Nutrients ; 13(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808763

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential for fetal development, and intrauterine transfer is the only supply of PUFAs to the fetus. The prevailing theory of gestational nutrient transfer is that certain nutrients (including PUFAs) may have prioritized transport across the placenta. Numerous studies have identified correlations between maternal and infant fatty acid concentrations; however, little is known about what role maternal PUFA status may play in differential intrauterine nutrient transfer. Twenty mother-infant dyads were enrolled at delivery for collection of maternal and umbilical cord blood, and placental tissue samples. Plasma concentrations of PUFAs were assessed using gas chromatography (GC-FID). Intrauterine transfer percentages for each fatty acid were calculated as follows: ((cord blood fatty acid level/maternal blood fatty acid level) × 100). Kruskal-Wallis tests were used to compare transfer percentages between maternal fatty acid tertile groups. A p-value < 0.05 was considered significant. There were statistically significant differences in intrauterine transfer percentages of arachidonic acid (AA) (64% vs. 65% vs. 45%, p = 0.02), eicosapentaenoic acid (EPA) (41% vs. 19% vs. 17%, p = 0.03), and total fatty acids (TFA) (27% vs. 26% vs. 20%, p = 0.05) between maternal plasma fatty acid tertiles. Intrauterine transfer percentages of AA, EPA, and TFA were highest in the lowest tertile of respective maternal fatty acid concentration. These findings may indicate that fatty acid transfer to the fetus is prioritized during gestation even during periods of maternal nutritional inadequacy.


Assuntos
Ácidos Graxos Insaturados/sangue , Ácidos Graxos Insaturados/metabolismo , Sangue Fetal/metabolismo , Desenvolvimento Fetal , Ácido Araquidônico/sangue , Ácido Araquidônico/metabolismo , Estudos Transversais , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3 , Feminino , Feto , Humanos , Lactente , Ácido Linoleico , Masculino , Placenta/metabolismo , Gravidez
17.
Nutrients ; 13(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918391

RESUMO

Per the Centers for Disease Control and Prevention, asthma prevalence has steadily risen since the 1980s. Using data from the National Health and Nutrition Examination Survey (NHANES), we investigated associations between milk consumption and pulmonary function (PF). Multivariable analyses were performed, adjusted for a priori potential confounders for lung function, within the eligible total adult population (n = 11,131) and those self-reporting asthma (n = 1,542), included the following variables: milk-consumption, asthma diagnosis, forced vital capacity (FVC), FVC%-predicted (%), forced expiratory volume in one-second (FEV1), FEV1% and FEV1/FVC. Within the total population, FEV1% and FVC% were significantly associated with regular (5+ days weekly) consumption of exclusively 1% milk in the prior 30-days (ß:1.81; 95% CI: [0.297, 3.325]; p = 0.020 and ß:1.27; [0.16, 3.22]; p = 0.046). Among participants with asthma, varied-regular milk consumption in a lifetime was significantly associated with FVC (ß:127.3; 95% CI: [13.1, 241.4]; p = 0.002) and FVC% (ß:2.62; 95% CI: [0.44, 4.80]; p = 0.006). No association between milk consumption and FEV1/FVC was found, while milk-type had variable influence and significance. Taken together, we found certain milk consumption tendencies were associated with pulmonary function values among normal and asthmatic populations. These findings propound future investigations into the potential role of dairy consumption in altering lung function and asthma outcomes, with potential impact on the protection and maintenance of pulmonary health.


Assuntos
Asma/fisiopatologia , Ingestão de Líquidos/fisiologia , Leite/estatística & dados numéricos , Adulto , Idoso , Animais , Asma/epidemiologia , Estudos Transversais , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Leite/efeitos adversos , Análise Multivariada , Inquéritos Nutricionais , Prevalência , Testes de Função Respiratória , Estados Unidos/epidemiologia , Capacidade Vital , Adulto Jovem
18.
Curr Allergy Asthma Rep ; 21(4): 24, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33768348

RESUMO

PURPOSE OF REVIEW: Lung diseases such as asthma and COPD are major public health issues and related to occupational exposures. While therapies to limit the development and progression of these diseases are limited, nutrition interventions could offer potential alternatives to mediate the inflammation associated with these diseases. This is a narrative review of the current state of relevant nutrients on inflammation and respiratory outcomes associated with occupational exposures. RECENT FINDINGS: Relevant nutrients that have been investigated in recent years include omega-3 polyunsaturated fatty acids, zinc, vitamin D, dairy products, and antioxidants. These nutrients have demonstrated the potential to prevent or modify the adverse outcomes associated with occupational exposures, primarily in preclinical studies. Current therapies for respiratory consequences associated with occupational exposures are limited; therefore, addressing strategies for reducing inflammation is important in improving quality of life and limiting health care costs. More human studies are warranted to determine the effectiveness of nutrition as an intervention.


Assuntos
Ácidos Graxos Ômega-3 , Pneumopatias , Doenças Profissionais , Animais , Antioxidantes/uso terapêutico , Laticínios , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Pneumopatias/epidemiologia , Pneumopatias/etiologia , Pneumopatias/terapia , Leite , Estado Nutricional , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Doenças Profissionais/terapia , Compostos Fitoquímicos/uso terapêutico , Qualidade de Vida , Vitamina D/uso terapêutico , Compostos de Zinco/uso terapêutico
19.
Chem Res Toxicol ; 34(3): 892-900, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33656867

RESUMO

Dimethyl selenide (DMSe) is one of the major volatile organoselenium compounds released into the atmosphere through plant metabolism and microbial methylation. DMSe has been recently revealed as a precursor of secondary organic aerosol (SOA), and its resultant SOA possesses strong oxidizing capability toward thiol groups that can perturb several major biological pathways in human airway epithelial cells and is linked to genotoxicity, DNA damage, and p53-mediated stress responses. Mounting evidence has suggested that long noncoding RNAs (lncRNAs) are involved in stress responses to internal and environmental stimuli. However, the underlying molecular interactions remain to be elucidated. In this study, we performed integrative analyses of lncRNA-mRNA coexpression in the transformed human bronchial epithelial BEAS-2B cell line exposed to DMSe-derived SOA. We identified a total of 971 differentially expressed lncRNAs in BEAS-2B cells exposed to SOA derived from O3 and OH oxidation of DMSe. Gene ontology (GO) network analysis of cis-targeted genes showed significant enrichment of DNA damage, apoptosis, and p53-mediated stress response pathways. trans-Acting lncRNAs, including PINCR, PICART1, DLGAP1-AS2, and LINC01629, known to be associated with human carcinogenesis, also showed altered expression in cell treated with DMSe-SOA. Overall, this study highlights the regulatory role of lncRNAs in altered gene expression induced by DMSe-SOA exposure.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Aerossóis/farmacologia , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Pulmão/metabolismo , RNA-Seq
20.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G586-G600, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501887

RESUMO

As countries continue to industrialize, major cities experience diminished air quality, whereas rural populations also experience poor air quality from sources such as agricultural operations. These exposures to environmental pollution from both rural and populated/industrialized sources have adverse effects on human health. Although respiratory diseases (e.g., asthma and chronic obstructive pulmonary disease) are the most commonly reported following long-term exposure to particulate matter and hazardous chemicals, gastrointestinal complications have also been associated with the increased risk of lung disease from inhalation of polluted air. The interconnectedness of these organ systems has offered valuable insights into the roles of the immune system and the micro/mycobiota as mediators of communication between the lung and the gut during disease states. A topical example of this relationship is provided by reports of multiple gastrointestinal symptoms in patients with coronavirus disease 2019 (COVID-19), whereas the rapid transmission and increased risk of COVID-19 has been linked to poor air quality and high levels of particulate matter. In this review, we focus on the mechanistic effects of environmental pollution on disease progression with special emphasis on the gut-lung axis.


Assuntos
COVID-19 , Exposição Ambiental , Gastroenteropatias , Pneumopatias , Poluição do Ar , COVID-19/epidemiologia , COVID-19/prevenção & controle , Comorbidade , Progressão da Doença , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Gastroenteropatias/epidemiologia , Gastroenteropatias/prevenção & controle , Humanos , Pneumopatias/epidemiologia , Pneumopatias/prevenção & controle , Saúde Pública , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...