Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 12(4): 651-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22310326

RESUMO

Arsenite is critical pharmacologically as a treatment for advanced stage blood cancer. However, environmental exposure to arsenic results in multiple diseases. Previous studies have shown that arsenic decreases expression of CYP3A, a critical drug metabolizing enzyme in human and rat liver. In addition, acute and chronic arsenic exposure in liver stimulates an inflammatory response. Our work has shown that arsenite decreases nuclear levels of RXRα the nuclear receptor that, as a heterodimer partner with PXR, transactivates the CYP3A gene. These results suggest that arsenite decreases transcription of CYP3A by decreasing RXRα. The present report shows that exposure to 5 µM arsenite decreased the activity of a rat CYP3A promoter luciferase reporter in HepG2 cells. The activity of a RARE-luciferase reporter, that is transactivated by the retinoic acid receptor (RAR)/RXRα, was also decreased. Previous studies have shown that arsenic in the concentration range of 2-5 µM affects CYP3A mRNA. When rifampicin-treated primary human hepatocyte cultures were exposed to arsenite concentrations as low as 50 nM, CYP3A mRNA was decreased. Treatment of primary human hepatocytes with the proteasome inhibitor MG132 increased RXRα suggesting the involvement of the proteasome pathway in regulation of RXRα. Finally, arsenic induces a pro-inflammatory response in liver. Surprisingly, we show that in hepatocytes arsenite decreases expression of two inflammatory mediators, TNF and VEGF, an effect that is not predicted from suppression of RXRα activity.


Assuntos
Arsenitos/toxicidade , Citocromo P-450 CYP3A/genética , Poluentes Ambientais/toxicidade , Hepatócitos/efeitos dos fármacos , Receptor X Retinoide alfa/metabolismo , Adulto , Células Cultivadas , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Pregnano X , RNA Mensageiro/metabolismo , Receptores de Esteroides/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator A de Crescimento do Endotélio Vascular/genética
2.
Toxicol Appl Pharmacol ; 217(3): 245-51, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17083955

RESUMO

Previous work in our laboratory has shown that acute exposure of primary rat hepatocyte cultures to non-toxic concentrations of arsenite causes major decreases in the DEX-mediated induction of CYP3A23 protein, with minor decreases in CYP3A23 mRNA. To elucidate the mechanism for these effects of arsenite, the effects of arsenite and proteasome inhibition, separately and in combination, on induction of CYP3A23 protein were compared. The proteasome inhibitor, MG132, inhibited proteasome activity, but also decreased CYP3A23 mRNA and protein. Lactacystin, another proteasome inhibitor, decreased CYP3A23 protein without affecting CYP3A23 mRNA at a concentration that effectively inhibited proteasome activity. This result, suggesting that the action of lactacystin is similar to arsenite and was post-transcriptional, was confirmed by the finding that lactacystin decreased association of DEX-induced CYP3A23 mRNA with polyribosomes. Both MG132 and lactacystin inhibited total protein synthesis, but did not affect MTT reduction. Arsenite had no effect on ubiquitination of proteins, nor did arsenite significantly affect proteasomal activity. These results suggest that arsenite and lactacystin act by similar mechanisms to inhibit translation of CYP3A23.


Assuntos
Arsenitos/toxicidade , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hepatócitos/efeitos dos fármacos , Inibidores de Proteassoma , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Células Cultivadas , Inibidores de Cisteína Proteinase/toxicidade , Citocromo P-450 CYP3A , Dexametasona/farmacologia , Interações Medicamentosas , Hepatócitos/enzimologia , Leupeptinas/toxicidade , Masculino , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...