Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 245: 38-52, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28126702

RESUMO

Sugar is commonly substituted with stevia-based products in food industry and in our daily-life. This substitution results in a change in food product characteristic formula and properties that may affect the growth dynamics of food pathogenic and spoilage bacteria. This work studies the effect of table sugar (TS), laboratory sucrose (LS), commercial stevia (St) and steviol glycosides (SG) on the growth dynamics of Salmonella Typhimurium and Listeria monocytogenes. Experiments were carried out in general and minimal culture media at 3 equivalent concentration levels in terms of sweetness intensity (TS and LS at 3, 9 and 15% (w/v); St at 0.3, 0.9 and 1.5% (w/v); and SG at 0.01, 0.03 and 0.05% (w/v)). Incubation temperatures were: 4, 8 and 20°C for general media, and for minimal media 20°C. To decipher the role of these sweeteners, their concentration evolution in minimal media was determined via HPLC analysis. The results revealed slow maximum specific growth rates (µmax) of S. Typhimurium in general media with increasing concentrations of TS and LS at 20°C; and reduced maximum cell population (Nmax) at 8°C. The growth of L. monocytogenes in general culture media remains invariable independently of the sweetener added, except at 4°C. At this critical temperature, the presence of TS, LS and St seems to facilitate the growth of L. monocytogenes, presenting higher µmax values in comparison to SG and the control. Varying bacterial response to changes in media formulation suggests that further research is required, focusing on revealing the microbial dynamics in structured media, as well as in real food products.


Assuntos
Sacarose Alimentar/química , Diterpenos do Tipo Caurano/química , Glucosídeos/química , Listeria monocytogenes/efeitos dos fármacos , Adoçantes não Calóricos/química , Salmonella typhimurium/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Contagem de Colônia Microbiana , Meios de Cultura , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Stevia/química , Temperatura
2.
Int J Food Microbiol ; 235: 17-27, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27393885

RESUMO

Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems. Additionally, the firmer the solid system, the faster L. monocytogenes grew on it. Finally, it was found that L. monocytogenes grows faster on canned meat and real Frankfurters, as found in a previous study, followed by liquids, aqueous gels, emulsions and gelled emulsions. This observation indicates that all model systems, developed in this study, underestimated L. monocytogenes growth. Despite some limitations, model systems are overall advantageous and therefore, their validation is always recommended prior to further use.


Assuntos
Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Listeria monocytogenes/crescimento & desenvolvimento , Animais , Contagem de Colônia Microbiana , Emulsões/análise , Conservação de Alimentos/métodos , Géis/análise , Concentração de Íons de Hidrogênio , Produtos da Carne/microbiologia , Modelos Biológicos , Temperatura , Fatores de Tempo , Vácuo
3.
Int J Food Microbiol ; 208: 75-83, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26057111

RESUMO

Predictive microbiology has recently acknowledged the impact of the solid(like) food structure on microbial behavior. The presence of this solid(like) structure causes microorganisms to grow as colonies and no longer planktonically as in liquid. In this paper, the growth dynamics of Salmonella Typhimurium and Escherichia coli were studied as a function of temperature, considering different growth morphologies, i.e., (i) planktonic cells, (ii) immersed colonies and (iii) surface colonies. For all three growth morphologies, both microorganisms were grown in petri dishes. While E. coli was grown under optimal pH and water activity (aw), for S. Typhimurium pH and aw were adapted to 5.5 and 0.990. In order to mimic a solid(like) environment, 5% (w/v) gelatin was added. All petri dishes were incubated under static conditions at temperatures in the range [8.0°C-22.0°C]. Cell density was determined via viable plate counting. This work demonstrates that the growth morphology (planktonic vs. colony) has a negligible effect on the growth dynamics as a function of temperature. The observation of almost equal growth rates for planktonic cultures and colonies is in contrast to literature where, mostly, a difference is observed, i.e., µplanktonic cells≥µimmersed colonies≥µsurface colonies. This difference might be due to shaking of the liquid culture in these studies, which results in a nutrient and oxygen rich environment, in contrast to the diffusion-limited gel system. Experiments also indicate that lag phases for solid(like) systems are similar to those for the planktonic cultures, as can be found in literature for similar growth conditions. Considering the maximum cell density, no clear trend was deducted for either of the microorganisms. This study indicates that the growth parameters in the suboptimal temperature range do not depend on the growth morphology. For the considered experimental conditions, models previously developed for liquid environments can be used for solid(like) systems.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Microbiologia de Alimentos , Salmonella typhimurium/crescimento & desenvolvimento , Temperatura , Células Imobilizadas , Contagem de Colônia Microbiana , Salmonella typhimurium/efeitos dos fármacos , Água/metabolismo
4.
Int J Food Microbiol ; 199: 8-14, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25621715

RESUMO

As most food systems are (semi-)solid, the effect of food structure on bacterial growth has been widely acknowledged. However, studies on the growth dynamics of yeasts have neglected the effect of food structure. In this paper, the growth dynamics of the spoilage yeast Saccharomyces cerevisiae was investigated at 23.5 °C in broth, singular, homogeneous biopolymer systems and binary biopolymer systems with a heterogeneous microstructure. The biopolymers gelatin and dextran were used to introduce the different levels of structure. The metabolizing ability of gelatin and dextran by S. cerevisiae was examined. To study microbial behavior in the binary systems at the micro level, mixtures were imaged with confocal laser scanning microscopy (CLSM). Growth dynamics and microscopic images of S. cerevisiae were compared with those obtained for Escherichia coli in the same model system (Boons et al., 2014). Different phase-separated, heterogeneous microstructures were obtained by changing the amount of added gelatin and dextran. Regardless of the microstructure, S. cerevisiae was preferentially located in the dextran phase. Metabolizing ability-tests indicated that gelatin could be consumed by S. cerevisiae but in the presence of glucose, no change in gelatin concentration was observed. No indication of dextran metabolizing ability was observed. When supplementing broth with gelatin or dextran alone, an enhanced growth rate and maximum cell density were observed. This enhancement was further increased by adding a second biopolymer, introducing a heterogeneous microstructure and hence increasing the medium structure complexity. The results obtained indicate that food structure complexity plays a significant role in the growth dynamics of S. cerevisiae, an important food spoiler.


Assuntos
Meios de Cultura/metabolismo , Dextranos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Biopolímeros/química , Biopolímeros/metabolismo , Meios de Cultura/química , Meios de Cultura/normas , Dextranos/química , Dextranos/metabolismo , Gelatina/química , Gelatina/metabolismo , Microscopia Confocal , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo
5.
Food Microbiol ; 44: 64-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25084647

RESUMO

Steam surface pasteurization is a promising decontamination technology for reducing pathogenic bacteria in different stages of food production. The effect of the artificial inoculation type and initial microbial load, however, has not been thoroughly assessed in the context of inactivation studies. In order to optimize the efficacy of the technology, the aim of this study was to design and validate a model system for steam surface pasteurization, assessing different inoculation methods and realistic microbial levels. More specifically, the response of Listeria innocua, a surrogate organism of Listeria monocytogenes, on a model fish product, and the effect of different inoculation levels following treatments with a steam surface pasteurization system was investigated. The variation in the resulting inoculation level on the samples was too large (77%) for the contact inoculation procedure to be further considered. In contrast, the variation of a drop inoculation procedure was 17%. Inoculation with high levels showed a rapid 1-2 log decrease after 3-5 s, and then no further inactivation beyond 20 s. A low level inoculation study was performed by analysing the treated samples using a novel contact plating approach, which can be performed without sample homogenization and dilution. Using logistic regression, results from this method were used to model the binary responses of Listeria on surfaces with realistic inoculation levels. According to this model, a treatment time of 23 s will result in a 1 log reduction (for P = 0.1).


Assuntos
Produtos Pesqueiros/microbiologia , Listeria/crescimento & desenvolvimento , Pasteurização/métodos , Animais , Culinária , Produtos Pesqueiros/análise , Peixes , Géis/química , Viabilidade Microbiana , Pasteurização/instrumentação , Vapor
6.
Appl Environ Microbiol ; 80(17): 5330-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951795

RESUMO

Current literature acknowledges the effect of food structure on bacterial dynamics. Most studies introduce this "structure" factor using a single gelling agent, resulting in a homogeneous environment, whereas in practice most food products are heterogeneous. Therefore, this study focuses on heterogeneous protein-polysaccharide mixtures, based on gelatin and dextran. These mixtures show phase separation, leading to a range of heterogeneous microstructures by adjusting relative concentrations of both gelling agents. Based on confocal microscope observations, the growth of Escherichia coli in gelatin-dextran systems was observed to occur in the dextran phase. To find a relation between microscopic and population behavior, growth experiments were performed in binary and singular gelatin-dextran systems and culture broth at 23.5°C, with or without adding 2.9% (wt/vol) NaCl. The Baranyi and Roberts growth model was fitted to the experimental data and parameter estimates were statistically compared. For salted binary mixtures, a decrease in the population maximum cell density was observed with increasing gelatin concentration. In this series, for one type of microstructure, i.e., a gelatin matrix phase with a disperse dextran phase, the maximum cell density decreased with decreasing percentage of dextran phase. However, this relation no longer held when other types of microstructure were observed. Compared to singular systems, adding a second gelling agent in the presence of NaCl had an effect on population lag phases and maximum cell densities. For unsalted media, the growth parameters of singular and binary mixtures were comparable. Introducing this information into mathematical models leads to more reliable growth predictions and enhanced food safety.


Assuntos
Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Gelatina/análise , Dextranos , Modelos Teóricos , Crescimento Demográfico , Cloreto de Sódio/metabolismo , Temperatura
7.
Food Res Int ; 64: 402-411, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30011667

RESUMO

Sublethal injury (SI) poses major public health concerns since injured cells are responsible for serious limitations in food diagnostics and are susceptible to recovery, often developing adaptive stress responses. Detection of SI is based on the difference in plate counts between non-selective media, which represent the total cell population, and selective media, to which injured cells become sensitive. Selective media for detection of sublethal membrane damage are often based on NaCl supplement, although there is a lack of consensus in the literature about appropriate levels. Planktonic cells are generally used to investigate SI mechanisms, although they often exhibit different stress tolerance than cell colonies in/on solid food (model) systems. In this work, the effect of growth morphology, colony size and concentration of the gelling agent in the growth media, on the maximum non-inhibitory NaCl concentration in the plating medium was assessed for Escherichia coli, Salmonella Typhimurium and Listeria innocua. Stationary phase cultures of planktonic cells and large and small colonies grown in either 1.5% (w/v) xanthan gum-based system or 2.5% (w/v) xanthan gum-based system exhibited significantly different viable counts and osmotolerance. The effect of cell arrangement and xanthan gum percentage in the growth media depended on the microorganism under investigation. Additionally, differences in the maximum non-inhibitory concentration were evident, with 5.0% (w/v) NaCl for the Gram-negative bacteria and 6.5% (w/v), for L. innocua. Different extent of colony shrinkage and morphological damage was observed as NaCl concentration in the plating medium increased. This information will contribute to define NaCl-based selective media for accurate SI detection under realistic scenarios.

8.
Food Microbiol ; 36(2): 355-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010617

RESUMO

The occurrence of sublethally injured cells in foods poses major public health concerns and is an essential aspect when assessing the microbial response to food preservation strategies, yet there is limited research dealing with its specific implications for mild heating. All available studies so far have been performed in broths colonized by planktonic cells, although their susceptibility to lethal agents has often been reported to be markedly different to the stress tolerance of cell colonies developed in solid foods. In this work, the effect of planktonic and colony growth, as well as the influence of colony density on sublethal injury induced by mild heating of Escherichia coli, Salmonella Typhimurium and Listeria innocua were assessed in food model systems. Detection of injured survivors relied on their inability to form visible colonies on salt-based selective media, which do not affect the growth of healthy cells. Sublethal injury (SI) increased rapidly with shorter exposure times and afterwards, decreased progressively, suggesting a mechanism of cumulative damage triggering lethal instead of SI. Cell arrangement affected the degree of SI, higher values being generally found for gelified systems, although the effect of colony density depended on the target microorganism. This information is essential for optimizing the design of food safety assurance systems.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Microbiologia de Alimentos , Conservação de Alimentos , Listeria/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Escherichia coli/química , Conservação de Alimentos/métodos , Temperatura Alta , Listeria/química , Salmonella typhimurium/química
9.
Food Microbiol ; 28(7): 1293-300, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21839378

RESUMO

Gas plasmas generated at atmospheric pressure and ambient temperatures offer a possible decontamination method for poultry products. The efficacy of cold atmospheric gas plasmas for decontaminating chicken skin and muscle inoculated with Listeria innocua was examined. Optimization of operating conditions for maximal bacterial inactivation was first achieved using membrane filters on which L. innocua had been deposited. Higher values of AC voltage, excitation frequency and the presence of oxygen in the carrier gas resulted in the greatest inactivation efficiency, and this was confirmed with further studies on chicken muscle and skin. Under optimal conditions, a 10 s treatment gave > 3 log reductions of L. innocua on membrane filters, an 8 min treatment gave 1 log reduction on skin, and a 4 min treatment gave > 3 log reductions on muscle. These results show that the efficacy of gas plasma treatment is greatly affected by surface topography. Scanning electron microscopy (SEM) images of chicken muscle and skin revealed surface features wherein bacteria could effectively be protected from the chemical species generated within the gas plasma. The developments in gas plasma technology necessary for its commercial application to foods are discussed.


Assuntos
Galinhas/microbiologia , Descontaminação/métodos , Desinfecção/métodos , Listeria/isolamento & purificação , Carne/microbiologia , Gases em Plasma/farmacologia , Pele/microbiologia , Animais , Filtração , Listeria/efeitos dos fármacos , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...