Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(9): E947-56, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730886

RESUMO

Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin-dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome.


Assuntos
Replicação do DNA/fisiologia , DNA Fúngico , DNA Mitocondrial , Genoma Mitocondrial/fisiologia , Dinâmica Mitocondrial/fisiologia , Saccharomyces cerevisiae/fisiologia , Actinas/genética , Actinas/metabolismo , Ciclo Celular , DNA Fúngico/biossíntese , DNA Fúngico/genética , DNA Mitocondrial/biossíntese , DNA Mitocondrial/genética , Variação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Elife ; 32014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25358118

RESUMO

The signal recognition particle (SRP) directs translating ribosome-nascent chain complexes (RNCs) that display a signal sequence to protein translocation channels in target membranes. All previous work on the initial step of the targeting reaction, when SRP binds to RNCs, used stalled and non-translating RNCs. This meant that an important dimension of the co-translational process remained unstudied. We apply single-molecule fluorescence measurements to observe directly and in real-time E. coli SRP binding to actively translating RNCs. We show at physiologically relevant SRP concentrations that SRP-RNC association and dissociation rates depend on nascent chain length and the exposure of a functional signal sequence outside the ribosome. Our results resolve a long-standing question: how can a limited, sub-stoichiometric pool of cellular SRP effectively distinguish RNCs displaying a signal sequence from those that are not? The answer is strikingly simple: as originally proposed, SRP only stably engages translating RNCs exposing a functional signal sequence.


Assuntos
Sistemas Computacionais , Escherichia coli/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Calibragem , Proteínas de Escherichia coli/metabolismo , Cinética , Iniciação Traducional da Cadeia Peptídica , Ligação Proteica
3.
J Biol Chem ; 289(28): 19294-305, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24808175

RESUMO

The signal recognition particle (SRP) directs ribosome-nascent chain complexes (RNCs) displaying signal sequences to protein translocation channels in the plasma membrane of prokaryotes and endoplasmic reticulum of eukaryotes. It was initially proposed that SRP binds the signal sequence when it emerges from an RNC and that successful binding becomes impaired as translation extends the nascent chain, moving the signal sequence away from SRP on the ribosomal surface. Later studies drew this simple model into question, proposing that SRP binding is unaffected by nascent chain length. Here, we reinvestigate this issue using two novel and independent fluorescence resonance energy transfer assays. We show that the arrival and dissociation rates of SRP binding to RNCs vary according to nascent chain length, resulting in the highest affinity shortly after a functional signal sequence emerges from the ribosome. Moreover, we show that SRP binds RNCs in multiple and interconverting conformations, and that conversely, RNCs exist in two conformations distinguished by SRP interaction kinetics.


Assuntos
Escherichia coli/metabolismo , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Escherichia coli/genética , Ribossomos/genética , Partícula de Reconhecimento de Sinal/genética
4.
Nat Genet ; 43(8): 776-84, 2011 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-21725307

RESUMO

Mutations affecting ciliary components cause ciliopathies. As described here, we investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel and Joubert syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2 and Cc2d2a. Components of this complex co-localize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes Joubert syndrome. Thus, a transition zone complex of Meckel and Joubert syndrome proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.


Assuntos
Membrana Celular/fisiologia , Cílios/metabolismo , Cílios/patologia , Proteínas de Membrana/fisiologia , Mutação/genética , Anormalidades Múltiplas , Animais , Doenças Cerebelares/genética , Cerebelo/anormalidades , Galinhas , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Anormalidades do Olho/genética , Humanos , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Especificidade de Órgãos , Fragmentos de Peptídeos/imunologia , Doenças Renais Policísticas/genética , Coelhos , Retina/anormalidades , Retinose Pigmentar , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Nat Chem Biol ; 5(10): 699-704, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19763097

RESUMO

Phenotypic diversity exists even within isogenic populations of cells. Such nongenetic individuality may have wide implications for our understanding of many biological processes. The field of study concerned with the investigation of nongenetic individuality, also known as the 'biology of noise', is ripe with exciting scientific opportunities and challenges.


Assuntos
Evolução Molecular , Expressão Gênica , Fenótipo , Envelhecimento/genética , Envelhecimento/fisiologia , Comunicação Celular , Processos Estocásticos
6.
Mol Cell ; 32(6): 815-26, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19111661

RESUMO

We recently proposed a cylindrical coat for the nuclear pore membrane in the nuclear pore complex (NPC). This scaffold is generated by multiple copies of seven nucleoporins. Here, we report three crystal structures of the nucleoporin pair Seh1*Nup85, which is part of the coat cylinder. The Seh1*Nup85 assembly bears resemblance in its shape and dimensions to that of another nucleoporin pair, Sec13*Nup145C. Furthermore, the Seh1*Nup85 structures reveal a hinge motion that may facilitate conformational changes in the NPC during import of integral membrane proteins and/or during nucleocytoplasmic transport. We propose that Seh1*Nup85 and Sec13*Nup145C form 16 alternating, vertical rods that are horizontally linked by the three remaining nucleoporins of the coat cylinder. Shared architectural and mechanistic principles with the COPII coat indicate a common evolutionary origin and support the notion that the NPC coat represents another class of membrane coats.


Assuntos
Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Maleabilidade , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Soluções , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...