Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(4): 100, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372801

RESUMO

This study aimed to assess the activity of AgNPs biosynthesized by Fusarium oxysporum (bio-AgNPs) against multidrug-resistant uropathogenic Proteus mirabilis, and to assess the antibacterial activity of catheters coated with bio-AgNPs. Broth microdilution and time-kill kinetics assays were used to determine the antibacterial activity of bio-AgNPs. Catheters were coated with two (2C) and three (3C) bio-AgNPs layers using polydopamine as crosslinker. Catheters were challenged with urine inoculated with P. mirabilis to assess the anti-incrustation activity. MIC was found to be 62.5 µmol l-1, causing total loss of viability after 4 h and bio-AgNPs inhibited biofilm formation by 76.4%. Catheters 2C and 3C avoided incrustation for 13 and 20 days, respectively, and reduced biofilm formation by more than 98%, while the pristine catheter was encrusted on the first day. These results provide evidence for the use of bio-AgNPs as a potential alternative to combat of multidrug-resistant P. mirabilis infections.


Assuntos
Nanopartículas Metálicas , Mirabilis , Cateteres Urinários , Proteus mirabilis , Prata/farmacologia , Antibacterianos/farmacologia
2.
Genomics ; 114(6): 110525, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423773

RESUMO

Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules.


Assuntos
Aminoácidos , Genômica , Filogenia , Coenzima A
3.
Front Microbiol ; 12: 714750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539608

RESUMO

Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 µg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 µg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.

4.
Folia Microbiol (Praha) ; 65(2): 381-392, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31401763

RESUMO

Citrus black spot (CBS) and post-bloom fruit drop (PFD), caused by Phyllosticta citricarpa and Colletotrichum abscissum, respectively, are two important citrus diseases worldwide. CBS depreciates the market value and prevents exportation of citrus fruits to Europe. PFD under favorable climatic conditions can cause the abscission of flowers, thereby reducing citrus production by 80%. An ecofriendly alternative to control plant diseases is the use of endophytic microorganisms, or secondary metabolites produced by them. Strain LGMF1631, close related to Diaporthe cf. heveae 1, was isolated from the medicinal plant Stryphnodendron adstringens and showed significant antimicrobial activity, in a previous study. In view of the potential presented by strain LGMF1631, and the absence of chemical data for secondary metabolites produced by D. cf. heveae, we decided to characterize the compounds produced by strain LGMF1631. Based on ITS, TEF1, and TUB phylogenetic analysis, strain LGMF1631 was confirmed to belong to D. cf. heveae 1. Chemical assessment of the fungal strain LGMF1631 revealed one new seco-dihydroisocoumarin [cladosporin B (1)] along with six other related, already known dihydroisocoumarin derivatives and one monoterpene [(-)-(1S,2R,3S,4R)-p-menthane-1,2,3-triol (8)]. Among the isolated metabolites, compound 5 drastically reduced the growth of both phytopathogens in vitro and completely inhibited the development of CBS and PFD in citrus fruits and flowers. In addition, compound 5 did not show toxicity against human cancer cell lines or citrus leaves, at concentrations higher than used for the inhibition of the phytopathogens, suggesting the potential use of (-)-(3R,4R)-cis-4-hydroxy-5-methylmellein (5) to control citrus diseases.


Assuntos
Ascomicetos/efeitos dos fármacos , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Isocumarinas/farmacologia , Saccharomycetales/química , Ascomicetos/fisiologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/fisiologia , Fabaceae/microbiologia , Frutas/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Isocumarinas/química , Isocumarinas/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação
5.
Fitoterapia ; 138: 104273, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31344395

RESUMO

Endophytic fungi have been considered a rich source for bioactive secondary metabolites with novel chemical structures. A high diverse group of endophytes, isolated from different medicinal plants, belongs to the genus Diaporthe. In a previously study performed by our group the crude extract of strain LGMF1583 showed considerable antibacterial activity mainly against Gram-negative bacteria. Based on ITS phylogeny analysis, strain LGMF1583 was identified as belonging to Diaporthe genus and may represent a new species. In the present study, we described the new species Diporthe vochysiae based on multilocus phylogeny analysis and morphological characteristics. The species name refers to the host, from which strain LGMF1583 was isolated, the medicinal plant Vochysia divergens. In view of the biotechnological potential of strain LGMF1583, we have also characterized the secondary metabolites produced by D. vochysiae. Chemical assessment of the D. vochysiae LGMF1583 revealed two new carboxamides, vochysiamides A (1) and B (2), in addition to the known metabolite, 2,5-dihydroxybenzyl alcohol (3). In the biological activity analysis, vochysiamide B (2) displayed considerable antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae (KPC), a producer of carbapenemases, MIC of 80 µg/mL. Carbapenemases are considered a major antimicrobial resistance threat, and infections caused by KPC have been considered a public health problem worldwide, and new compounds with activity against this bacterium are nowadays even more required.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Ascomicetos/química , Myrtales/microbiologia , Plantas Medicinais/microbiologia , Amidas/isolamento & purificação , Antibacterianos/isolamento & purificação , Ascomicetos/classificação , Brasil , Linhagem Celular Tumoral , Endófitos/química , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Estrutura Molecular , Filogenia
6.
Front Microbiol ; 9: 1526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087658

RESUMO

Medicinal plants have been recognized as hosts of high diverse endophytic microorganisms, including fungi that produce secondary metabolites with biological activity. Two biomes in Brazil, Pantanal (wetland), and Cerrado (savannah), are known as biodiversity hotspots, and despite their importance as a reservoir for several species, knowledge about the fungal biodiversity in these biomes is very limited. Fungal endophytic communities associated with leaves and petioles of the medicinal plants Vochysia divergens (from Pantanal) and Stryphnodendron adstringens (from Cerrado) were analyzed and studied for their antimicrobial activity against human and plant pathogens. A total of 1,146 isolates of endophytic fungi were obtained from plants collected in January and June of 2016 and grouped into 124 morphotypes. One isolate of each morphotype was identified by sequencing of internal transcribed spacer (ITS) region of the rDNA gene, which revealed the presence of 24 genera, including 3 possible new genera, and 48 taxa. Differences in the endophytic community according to the biomes were observed concerning the analyzed morphotypes. However, when we analyzed the diversity of genera and richness, they were similar for both plants, with Diaporthe, Phyllosticta, and Neofusicoccum as dominant genera. In addition, the community composition of V. divergens differs according to the analyzed plant tissues (petiole and leaf). These data suggested that both, the plant species and plant tissues play a role in the composition of endophytic community. As regards the biotechnological potential, 5 isolates showed activity against the phytopathogens Phyllosticta citricarpa, Colletotrichum abscissum, and Fusarium verticilioides, and 8 isolates showed high activity against clinical pathogens and were selected for the production of crude extract in different culture media. Extract from cultivation of Diaporthe sp. LGMF1548 and LGMF1583 and Neofusicoccum brasiliense LGMF1535 showed activity against methicillin-resistant Staphylococcus aureus, Klebssiella pneumonia, and Candida albicans. In addition, extracts of Diaporthe cf. heveae LGMF1631 inhibited 90% of the mycelial growth of the P. citricarpa and 70% of C. abscissum and may represent an alternative to be used in the biological control of these phytopathogens. Future research will focus on the chemical characterization and structural elucidation of these bioactive compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...