Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(4)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831195

RESUMO

Spinal cord injury (SCI) leads to persistent neurological deficits without available curative treatment. After SCI astrocytes within the lesion vicinity become reactive, these undergo major morphological, and molecular transformations. Previously, we reported that following SCI, over 10% of resident astrocytes surrounding the lesion spontaneously transdifferentiate towards a neuronal phenotype. Moreover, this conversion is associated with an increased expression of fibroblast growth factor receptor 4 (Fgfr4), a neural stem cell marker, in astrocytes. Here, we evaluate the therapeutic potential of gene therapy upon Fgfr4 over-expression in mature astrocytes following SCI in adult mice. We found that Fgfr4 over-expression in astrocytes immediately after SCI improves motor function recovery; however, it may display sexual dimorphism. Improved functional recovery is associated with a decrease in spinal cord lesion volume and reduced glial reactivity. Cell-specific transcriptomic profiling revealed concomitant downregulation of Notch signaling, and up-regulation of neurogenic pathways in converting astrocytes. Our findings suggest that gene therapy targeting Fgfr4 over-expression in astrocytes after injury is a feasible therapeutic approach to improve recovery following traumatism of the spinal cord. Moreover, we stress that a sex-dependent response to astrocytic modulation should be considered for the development of effective translational strategies in other neurological disorders.


Assuntos
Astrócitos , Traumatismos da Medula Espinal , Camundongos , Animais , Regulação para Cima , Astrócitos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Traumatismos da Medula Espinal/terapia
2.
Exp Neurol ; 357: 114198, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944658

RESUMO

Spinal cord injury (SCI) is a disastrous event causing irreversible loss of both sensory and motor function. After SCI, both ascending dorsal column axons and descending corticospinal tract (CST) axons undergo rapid degeneration that is subsequently followed by slow axonal dieback and retraction bulb formation. Pre-clinical studies over the last two decades using genetic and, to a lesser extent, pharmacological approaches have identified several molecules that regulate intrinsic axon regeneration after SCI. However, accumulating evidence suggests that the efficacy of intrinsic pro-regenerative molecules to enhance axon regeneration is considerably different between ascending dorsal column and descending CST axons following SCI. Here I describe the different molecules targeting intrinsic regeneration and their efficacy in triggering dorsal column and CST axon regeneration after SCI. First, I will briefly describe the general anatomy of dorsal column and CST axons as well as their acute and chronic response after SCI. Then, I will review the latest genetic and pharmacological studies identifying molecules targeting intrinsic axon regeneration and the efficacy of such molecules in promoting dorsal column and CST axon regeneration after SCI. Next, I will review accumulating evidence suggesting important differences in regenerative response between dorsal column and CST axons upon targeting intrinsic pro-regenerative molecules. Finally, I will suggest future research directions to uncover the downstream molecular mechanisms responsible for differences in regenerative response between dorsal column and CST axons following SCI.


Assuntos
Axônios , Traumatismos da Medula Espinal , Axônios/fisiologia , Humanos , Regeneração Nervosa/fisiologia , Tratos Piramidais/fisiologia , Medula Espinal
3.
Cells ; 10(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943841

RESUMO

Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr-the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.


Assuntos
Linhagem da Célula , Epêndima/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Oncostatina M/metabolismo , RNA/genética , Traumatismos da Medula Espinal/genética , Células-Tronco/patologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Cílios/genética , Regulação para Baixo/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Subunidade beta de Receptor de Oncostatina M , RNA/metabolismo , Esferoides Celulares/metabolismo , Medula Espinal/patologia , Regulação para Cima/genética
4.
Exp Neurol ; 318: 174-191, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085200

RESUMO

Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.


Assuntos
Regeneração Nervosa/fisiologia , Serotonina/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Humanos
6.
Front Cell Neurosci ; 12: 368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386212

RESUMO

Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by activation and proliferation of resident microglia as well as infiltrating peripheral monocyte-derived macrophages. Depending on the time post-lesion, positive and detrimental influences of microglia/macrophages on axonal regeneration had been reported after SCI, raising the issue whether their modulation may represent an attractive therapeutic strategy. Colony-stimulating factor 1 (CSF1) regulates microglia/macrophages proliferation, differentiation and survival thus, pharmacological treatments using CSF1 receptor (CSF1R) inhibitors had been used to ablate microglia. We analyzed the effect of chronic (10 weeks) food diet containing GW2580 (a CSF1R inhibitor) in mice that underwent lateral spinal cord hemisection (HS) at vertebral thoracic level 9. Treatment started 4 weeks prior to SCI and continued until 6 weeks post-lesion. We first demonstrate that GW2580 treatment did not modify microglial response in non-injured spinal cords. Conversely, a strong decrease in proliferating microglia was observed following SCI. Second, we showed that GW2580 treatment improved some parameters of motor recovery in injured animals through better paw placement. Using in and ex vivo magnetic resonance imaging (MRI), we then established that GW2580 treatment had no effect on lesion extension and volume. However, histological analyses revealed that GW2580-treated animals had reduced gliosis and microcavity formation following SCI. In conclusion, CSF1R blockade using GW2580 specifically inhibits SCI-induced microglia/macrophages proliferation, reduces gliosis and microcavity formations and improves fine motor recovery after incomplete SCI. Preventing microglial proliferation may offer therapeutic approach to limit neuroinflammation, promote tissue preservation and motor recovery following SCI.

7.
Front Cell Neurosci ; 12: 173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977191

RESUMO

Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.

8.
Oncotarget ; 7(51): 83831-83832, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27926495
9.
Mol Neurodegener ; 11(1): 68, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716282

RESUMO

BACKGROUND: Neurons have intrinsic capability to regenerate after lesion, though not spontaneously. Spinal cord injury (SCI) causes permanent neurological impairments partly due to formation of a glial scar that is composed of astrocytes and microglia. Astrocytes play both beneficial and detrimental roles on axonal re-growth, however, their precise role after SCI is currently under debate. METHODS: We analyzed molecular changes in astrocytes at multiple stages after two SCI severities using cell-specific transcriptomic analyses. RESULTS: We demonstrate that astrocyte response after injury depends on both time after injury and lesion severity. We then establish that injury induces an autologous astroglial transdifferentiation where over 10 % of astrocytes express classical neuronal progenitor markers including ßIII-tubulin and doublecortin with typical immature neuronal morphology. Lineage tracing confirmed that the origin of these astrocytes is resident mature, rather than newly formed astrocytes. Astrocyte-derived neuronal progenitors subsequently express GABAergic, but not glutamatergic-specific markers. Furthermore, we have identified the neural stem cell marker fibroblast growth factor receptor 4 (Fgfr4) as a potential autologous modulator of astrocytic transdifferentiation following SCI. Finally, we establish that astroglial transdifferentiation into neuronal progenitors starts as early as 72 h and continues to a lower degrees up to 6 weeks post-lesion. CONCLUSION: We thus demonstrate for the first time autologous injury-induced astroglial conversion towards neuronal lineage that may represent a therapeutic strategy to replace neuronal loss and improve functional outcomes after central nervous system injury.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Linhagem da Célula , Transdiferenciação Celular/fisiologia , Microglia/citologia , Células-Tronco Neurais/citologia , Traumatismos da Medula Espinal/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos
10.
Mol Neurodegener ; 10: 34, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26227626

RESUMO

BACKGROUND: There is growing evidence that microglia are key players in the pathological process of amyotrophic lateral sclerosis (ALS). It is suggested that microglia have a dual role in motoneurone degeneration through the release of both neuroprotective and neurotoxic factors. RESULTS: To identify candidate genes that may be involved in ALS pathology we have analysed at early symptomatic age (P90), the molecular signature of microglia from the lumbar region of the spinal cord of hSOD1(G93A) mice, the most widely used animal model of ALS. We first identified unique hSOD1(G93A) microglia transcriptomic profile that, in addition to more classical processes such as chemotaxis and immune response, pointed toward the potential involvement of the tumour suppressor gene breast cancer susceptibility gene 1 (Brca1). Secondly, comparison with our previous data on hSOD1(G93A) motoneurone gene profile substantiated the putative contribution of Brca1 in ALS. Finally, we established that Brca1 protein is specifically expressed in human spinal microglia and is up-regulated in ALS patients. CONCLUSIONS: Overall, our data provide new insights into the pathogenic concept of a non-cell-autonomous disease and the involvement of microglia in ALS. Importantly, the identification of Brca1 as a novel microglial marker and as possible contributor in both human and animal model of ALS may represent a valid therapeutic target. Moreover, our data points toward novel research strategies such as investigating the role of oncogenic proteins in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína BRCA1/fisiologia , Microglia/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Fatores Etários , Esclerose Lateral Amiotrófica/genética , Animais , Proteína BRCA1/biossíntese , Proteína BRCA1/genética , Dano ao DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Gliose/genética , Gliose/patologia , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Mutação Puntual , Proteínas Recombinantes , Medula Espinal/citologia , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Transcriptoma , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...