Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30687821

RESUMO

Ralstonia solanacearum is the causal agent of bacterial wilt in numerous species of plants. Here, we report the whole-genome sequence of three phylogenetically diverse R. solanacearum strains, P816, P822, and P824, reported for the first time as causal agents of an emerging blueberry disease in Florida.

2.
Plant Methods ; 13: 86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075312

RESUMO

BACKGROUND: Most current methods for constructing guide RNAs (gRNA) for the CRISPR/Cas9 genome editing system, depend on traditional cloning using specific type IIS restriction enzymes and DNA ligation. These methods consist of multiple steps of cloning, and are time consuming, resource intensive and not flexible. These issues are particularly exacerbated when multiple guide RNAs need to be assembled in one plasmid such as for multiplexing or for the paired nickases approach. Furthermore, identification of functional gRNA clones usually requires expensive in vitro screening. Addressing these issues will greatly facilitate usage and accessibility of CRISPR/Cas9 genome editing system to resource-limited laboratories. RESULTS: To improve efficiency of cloning multiple guide RNAs for the CRISPR/Cas9 system, we developed a restriction enzyme- and ligation-independent strategy for cloning gRNAs directly in plant expression vectors in one step. Our method relies on a negative selection marker and seamless cloning for combining multiple gRNAs directly in a plant expression vector in one reaction. In addition, using the Agrobacterium-mediated transient assays, this method provides a simple in planta procedure for assaying the effectiveness of multiple gRNAs very rapidly. CONCLUSIONS: For a fraction of resources used in the type IIS restriction enzyme-based cloning method and in vitro screening assays, the system reported here allows efficient construction and testing several ready-to-transfect gRNA constructs in < 3 days. In addition, this system is highly versatile and flexible, and by designing only two additional target-specific primers, multiple gRNAs can be easily assembled in any plasmid in a single reaction.

3.
Front Plant Sci ; 8: 1565, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955357

RESUMO

Strains of the Ralstonia solanacearum species complex in the phylotype IIB group are capable of causing Bacterial Wilt disease in potato and tomato at temperatures lower than 24°C. The capability of these strains to survive and to incite infection at temperatures colder than their normally tropical boundaries represents a threat to United States agriculture in temperate regions. In this work, we used a comparative genomics approach to identify orthologous genes linked to the lower temperature virulence phenotype. Six R. solanacearum cool virulent (CV) strains were compared to six strains non-pathogenic at low temperature (NPLT). CV strains can cause Bacterial Wilt symptoms at temperatures below 24°C, while NPLT cannot. Four R. solanacearum strains were sequenced for this work in order to complete the comparison. An orthologous genes comparison identified 44 genes present only in CV strains and 19 genes present only in NPLT strains. Gene annotation revealed a high percentage of genes compared with whole genomes in the transcriptional regulator and transport categories. A single nucleotide polymorphism (SNP) analysis identified 265 genes containing conserved non-synonymous SNPs in CV strains. Ten genes in the pathogenicity category were identified in this group. Comparisons of type 3 secretion system, type 6 secretion system (T6SS) clusters, and associated effectors did not indicate a correlation with the CV phenotype except for one T6SS VGR effector potentially associated with the CV phenotype. This is the first R. solanacearum genomic comparative analysis of multiple strains with different temperature related virulence. The candidate genes identified by this comparison are potential factors involved in virulence at low temperatures that need to be investigated. The high percentage of transcriptional regulators among the genes present only in CV strains supports the hypothesis that temperature dependent regulation of virulence genes explains the differential virulence phenotype at low temperatures. This comparison contributes to find new possible connections of temperature dependent virulence to the previously described complex regulatory system involving quorum-sensing, phenotype conversion (phcA), acyl-HSL production and responses to SA. It also added novel candidate T6SS effectors and useful detailed information about the T6SS in R. solanacearum.

4.
Plant Dis ; 100(2): 500-509, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694125

RESUMO

This report investigates population structure and genetic variability of Phytophthora spp. isolated from botanically diverse plants in Florida. Internal transcribed spacer-based molecular phylogenetic analyses indicate that Phytophthora isolates recovered from ornamental plants in Florida represent a genetically diverse population and that a majority of the isolates belong to Phytophthora nicotianae (73.2%), P. palmivora (18.7%), P. tropicalis (4.9%), P. katsurae (2.4%), and P. cinnamomi (0.8%). Mating type analyses revealed that most isolates were heterothallic, consisting of both mating type A1 (25.2%) and mating type A2 (39.0%), and suggesting that they could outcross. Fungicide sensitivity assays determined that several isolates were moderate to completely insensitive to mefenoxam. In addition, several isolates were also moderately insensitive to additional fungicides with different modes of action. However, correlation analyses did not reveal occurrence of fungicide cross-resistance. These studies suggest that a genetically diverse Phytophthora population infects ornamental crops and the occurrence of mefenoxam-insensitive Phytophthora populations raises concerns about disease management in ornamentals. Mitigating fungicide resistance will require prudent management strategies, including tank mixes and rotation of chemicals with different modes of actions.

5.
BMC Genomics ; 15: 280, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725348

RESUMO

BACKGROUND: Ralstonia solanacearum, the causal agent of bacterial wilt, is a genetically diverse bacterial plant pathogen present in tropical and subtropical regions of the world that infects more than 200 plant species, including economically important solanaceous crops. Most strains of R. solanacearum are only pathogenic at temperatures between 25 to 30°C with strains that can cause disease below 20°C considered a threat to agriculture in temperate areas. Identifying key molecular factors that distinguish strains virulent at cold temperatures from ones that are not is needed to develop effective management tools for this pathogen. We compared protein profiles of two strains virulent at low temperature and two strains not virulent at low temperature when incubated in the rhizosphere of tomato seedlings at 30 and 18°C using quantitative 2D DIGE gel methods. Spot intensities were quantified and compared, and differentially expressed proteins were sequenced and identified by mass spectrometry (MS/MS). RESULTS: Four hundred and eighteen (418) differentially expressed protein spots sequenced produced 101 unique proteins. The identified proteins were classified in the Gene Ontology biological processes categories of metabolism, cell processes, stress response, transport, secretion, motility, and virulence. Identified virulence factors included catalase (KatE), exoglucanase A (ChbA), drug efflux pump, and twitching motility porin (PilQ). Other proteins identified included two components of a putative type VI secretion system. We confirmed differential expression of 13 candidate genes using real time PCR techniques. Global regulators HrpB and HrpG also had temperature dependent expression when quantified by real time PCR. CONCLUSIONS: The putative involvement of the identified proteins in virulence at low temperature is discussed. The discovery of a functional type VI secretion system provides a new potential virulence mechanism to explore. The global regulators HrpG and HrpB, and the protein expression profiles identified suggest that virulence at low temperatures can be partially explained by differences in regulation of virulence factors present in all the strains.


Assuntos
Proteoma , Proteômica , Ralstonia solanacearum/metabolismo , Temperatura , Fatores de Virulência , Transporte Biológico , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ralstonia solanacearum/genética , Estresse Fisiológico/genética , Virulência/genética , Fatores de Virulência/genética
6.
Genome Announc ; 2(1)2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24558246

RESUMO

Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive bacterial plant diseases. We present the whole-genome sequence of the strain P673 (phylotype IIB, sequevar 4). This strain is capable of producing disease in tomato plants at low temperatures. P673 has 311 unique genes.

7.
Plant Dis ; 97(10): 1301-1307, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30722131

RESUMO

A bacterial spot of rose (Rosa spp.) caused by a xanthomonad was observed in Florida and Texas. Ten representative strains collected from the two states between 2004 and 2010 were used to determine the taxonomic position of this rose pathogen. Fatty acid methyl ester analysis was performed and a nearly 2-kb 16S-23S rRNA intergenic spacer along with flanking portions of the 16S and 23S rRNA genes were sequenced for selected strains, showing that they were members of the genus Xanthomonas. Multilocus sequence typing and analysis (MLST/MLSA) and pathogenicity tests were conducted to further characterize the Xanthomonas strains. The MLSA, based on six gene fragments-fusA, gapA, gltA, gyrB, lacF, and lepA-showed that the rose strains fell into Xanthomonas axonopodis subgroup 9.2 and shared the highest similarity values (98.8 to 99.7%) with X. alfalfae subsp. citrumelonis of the subgroup. However, principal coordinate analysis grouped the rose strains into a unique cluster distinct from other members of the subgroup according to virulence phenotypes on 11 plant species belonging to five plant families (Araceae, Euphorbiaceae, Rosaceae, Rutaceae, and Solanaceae). Moreover, the rose strains were aggressive on rose and Indian Hawthorn (Rhaphiolepsis indica). On the basis of the MLSA and virulence phenotypes, the pathovar epithet rosa is proposed.

8.
Phytopathology ; 102(10): 924-36, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22957819

RESUMO

This is the first comprehensive study of a collection of Ralstonia solanacearum strains from the southeastern United States to be characterized based on biovar, pathogenicity, hypersensitive reaction on tobacco, and phylogenetic analyses of the egl sequence. Rigorous phylogenetic analysis of the commonly used egl gene produced robust phylogenies that differed significantly from a neighbor-joining tree differed from and previously published phylogenies for R. solanacearum strains. These robust trees placed phylotype IV within the phylotype I clade, which may suggest that phylogenies based solely on egl may be misleading. As a result of phylogenetic analyses in this study, we determined that U.S. strains from Georgia, North Carolina, South Carolina, and older Florida strains isolated from solanaceous crops all belong to phylotype II sequevar 7. However, many strains recently isolated in Florida from tomato and other crops were more diverse than the southeastern United States population. These unique Florida strains grouped with strains mostly originating from the Caribbean and Central America. One of the exotic strains, which in a previous study was determined to be established in northern Florida, was characterized more extensively. Upon using Musa-specific multiplex polymerase chain reaction, this strain produced a unique banding pattern, which has not previously been reported. Inoculation of this strain into Musa spp. did not result in wilt symptoms; however, the plants were stunted and root masses were significantly reduced. Furthermore, following root inoculation, the bacterium, unlike a typical Florida race 1 biovar 1 strain, was recovered from the roots and stems, indicating systemic movement. This is the first report of an R. solanacearum strain isolated in the United States that is deleterious to the growth of Musa plants.


Assuntos
Ralstonia solanacearum/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Ralstonia solanacearum/genética , Sudeste dos Estados Unidos
9.
Phytopathology ; 102(2): 185-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21936660

RESUMO

Ralstonia solanacearum causes bacterial wilt on a wide range of plant hosts. Most strains of R. solanacearum are nonpathogenic below 20°C; however, Race 3 Biovar 2 (R3B2) strains are classified as quarantine pathogens because of their ability to infect crops, cause disease, and survive in temperate climates. We have identified race 1 biovar 1 Phylotype IIB Sequevar 4 strains present in Florida which were able to infect and produce wilt symptoms on potato and tomato at 18°C. Moreover they infected tomato plants at rates similar to strains belonging to R3B2. We determined that strains naturally nonpathogenic at 18°C were able to multiply, move in planta, and cause partial wilt when inoculated directly into the stem, suggesting that low temperature affects virulence of strains differently at early stages of infection. Bacterial growth in vitro was delayed at low temperatures, however it was not attenuated. Twitching motility observed on growing colonies was attenuated in nonpathogenic strains at 18°C, while not affected in the cool virulent ones. Using pilQ as a marker to evaluate the relative expression of the twitching activity of R. solanacearum strains, we confirmed that cool virulent strains maintained a similar level of pilQ expression at both temperatures, while in nonpathogenic strains pilQ was downregulated at 18°C.


Assuntos
Temperatura Baixa , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade , Solanum lycopersicum/microbiologia , Solanum tuberosum/microbiologia , Regulação para Baixo , Proteínas de Fímbrias/genética , Florida , Regulação Bacteriana da Expressão Gênica , Marcadores Genéticos/genética , Caules de Planta/microbiologia , Plântula/microbiologia , Virulência , Fatores de Virulência
10.
BMC Genomics ; 12: 146, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21396108

RESUMO

BACKGROUND: Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. RESULTS: We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. CONCLUSIONS: Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.


Assuntos
Capsicum/microbiologia , Hibridização Genômica Comparativa , Genoma Bacteriano , Xanthomonas/genética , Sistemas de Secreção Bacterianos/genética , Biologia Computacional , DNA Bacteriano/genética , Genes Bacterianos , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Xanthomonas/patogenicidade
11.
BMC Genomics ; 11: 238, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20388224

RESUMO

BACKGROUND: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. RESULTS: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. CONCLUSION: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.


Assuntos
Citrus/microbiologia , Genoma Bacteriano/genética , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/genética , Agrobacterium tumefaciens/genética , Biofilmes , Flagelos/genética , Genes Bacterianos/genética , Família Multigênica , Antígenos O/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Percepção de Quorum/genética , Ralstonia solanacearum/genética , Especificidade da Espécie , Xanthomonas/citologia , Xanthomonas/metabolismo , Xanthomonas/fisiologia
12.
Phytopathology ; 99(9): 1070-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19671009

RESUMO

Each year, large volumes of ornamental and food plant propagative stock are imported into the North America; occasionally, Ralstonia solanacearum is found systemically infecting this plant material. In this study, 107 new R. solanacearum strains were collected over a 10-year period from imported propagative stock and compared with 32 previously characterized R. solanacearum strains using repetitive polymerase chain reaction (rep-PCR) element (BOX, ERIC, and REP) primers. Additional strain comparisons were made by sequencing the endoglucanase and the cytochrome b561 genes. Using rep-PCR primers, populations could be distinguished by biovar and, to a limited extent, country of origin and original host. Similarity coefficients among rep-PCR clusters within biovars were relatively low in many cases, indicating that disease outbreaks over time may have been caused by different clonal populations. Similar population differentiations of R. solanacearum were obtained when comparing strain sequences using either the endoglucanase or cytochrome b561 genes. We found that most of the new biovar 1 strains of R. solanacearum entering the United States were genetically distinct from the biovar 1 strains currently found infecting vegetable production. These introduced biovar 1 strains also had a broader host range and could infect not only tomato, tobacco, and potato but also anthurium and pothos and cause symptoms on banana. All introductions into North America of race 3, biovar 2 strains in the last few years have been linked to geranium production and appeared to be clonal.


Assuntos
Variação Genética , Ralstonia solanacearum/genética , Filogenia , Reação em Cadeia da Polimerase , Ralstonia solanacearum/classificação
13.
Ann Bot ; 93(2): 157-66, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14726418

RESUMO

BACKGROUND AND AIMS: Aglaonema is an important ornamental foliage plant genus, but genetic relationships among its species and cultivars have not been reported. This study analysed genetic relatedness of 54 cultivars derived from nine species using amplified fragment length polymorphism (AFLP) markers. METHODS: Initially, 48 EcoRI + 2/MseI + 3 primer set combinations were screened, from which six primer sets that showed clear scoreable and highly polymorphic fragments were selected and used for AFLP reactions. AFLP fragments were scored and entered into a binary data matrix as discrete variables. Jaccard's coefficient of similarity was calculated for all pair-wise comparisons among the 54 cultivars, and a dendrogram was constructed by the unweighted pair-group method using the arithmetic average (UPGMA). KEY RESULTS: The number of AFLP fragments generated per primer set ranged from 59 to 112 with fragment sizes varying from 50 to 565 bp. A total of 449 AFLP fragments was detected, of which 314 were polymorphic (70 %). All cultivars were clearly differentiated by their AFLP fingerprints. The 54 cultivars were divided into seven clusters; cultivars within each cluster generally share similar morphological characteristics. Cluster I contains 35 cultivars, most of them are interspecific hybrids developed mainly from A. commutatum, A. crispum or A. nitidum. However, Jaccard's similarity coefficients among these hybrids are 0.84 or higher, suggesting that these popular hybrid cultivars are genetically much closer than previously thought. This genetic similarity may imply that A. nitidum and A. crispum are likely progenitors of A. commutatum. CONCLUSIONS: Results of this study demonstrate the efficiency and ease of using AFLP markers for investigating genetic relationships of ornamental foliage plants, a group usually propagated vegetatively. The AFLP markers developed will help future Aglaonema cultivar identification, germplasm conservation and new cultivar development.


Assuntos
Araceae/classificação , Araceae/genética , Polimorfismo Genético/genética , Cruzamentos Genéticos , Primers do DNA , Marcadores Genéticos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...