Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 5: 944-952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34473547

RESUMO

PURPOSE: Early identification of patients who may be at high risk of significant weight loss (SWL) is important for timely clinical intervention in lung cancer radiotherapy (RT). A clinical decision support system (CDSS) for SWL prediction was implemented within the routine clinical workflow and assessed on a prospective cohort of patients. MATERIALS AND METHODS: CDSS incorporated a machine learning prediction model on the basis of radiomics and dosiomics image features and was connected to a web-based dashboard for streamlined patient enrollment, feature extraction, SWL prediction, and physicians' evaluation processes. Patients with lung cancer (N = 37) treated with definitive RT without prior RT were prospectively enrolled in the study. Radiomics and dosiomics features were extracted from CT and 3D dose volume, and SWL probability (≥ 0.5 considered as SWL) was predicted. Two physicians predicted whether the patient would have SWL before and after reviewing the CDSS prediction. The physician's prediction performance without and with CDSS and prediction changes before and after using CDSS were compared. RESULTS: CDSS showed significantly better prediction accuracy than physicians (0.73 v 0.54) with higher specificity (0.81 v 0.50) but with lower sensitivity (0.55 v 0.64). Physicians changed their original prediction after reviewing CDSS prediction for four cases (three correctly and one incorrectly), for all of which CDSS prediction was correct. Physicians' prediction was improved with CDSS in accuracy (0.54-0.59), sensitivity (0.64-0.73), specificity (0.50-0.54), positive predictive value (0.35-0.40), and negative predictive value (0.76-0.82). CONCLUSION: Machine learning-based CDSS showed the potential to improve SWL prediction in lung cancer RT. More investigation on a larger patient cohort is needed to properly interpret CDSS prediction performance and its benefit in clinical decision making.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Neoplasias Pulmonares , Médicos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Estudos Prospectivos , Redução de Peso
2.
Phys Med Biol ; 65(19): 195015, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32235058

RESUMO

We propose a multi-view data analysis approach using radiomics and dosiomics (R&D) texture features for predicting acute-phase weight loss (WL) in lung cancer radiotherapy. Baseline weight of 388 patients who underwent intensity modulated radiation therapy (IMRT) was measured between one month prior to and one week after the start of IMRT. Weight change between one week and two months after the commencement of IMRT was analyzed, and dichotomized at 5% WL. Each patient had a planning CT and contours of gross tumor volume (GTV) and esophagus (ESO). A total of 355 features including clinical parameter (CP), GTV and ESO (GTV&ESO) dose-volume histogram (DVH), GTV radiomics, and GTV&ESO dosiomics features were extracted. R&D features were categorized as first- (L1), second- (L2), higher-order (L3) statistics, and three combined groups, L1 + L2, L2 + L3 and L1 + L2 + L3. Multi-view texture analysis was performed to identify optimal R&D input features. In the training set (194 earlier patients), feature selection was performed using Boruta algorithm followed by collinearity removal based on variance inflation factor. Machine-learning models were developed using Laplacian kernel support vector machine (lpSVM), deep neural network (DNN) and their averaged ensemble classifiers. Prediction performance was tested on an independent test set (194 more recent patients), and compared among seven different input conditions: CP-only, DVH-only, R&D-only, DVH + CP, R&D + CP, R&D + DVH and R&D + DVH + CP. Combined GTV L1 + L2 + L3 radiomics and GTV&ESO L3 dosiomics were identified as optimal input features, which achieved the best performance with an ensemble classifier (AUC = 0.710), having statistically significantly higher predictability compared with DVH and/or CP features (p < 0.05). When this performance was compared to that with full R&D-only features which reflect traditional single-view data, there was a statistically significant difference (p < 0.05). Using optimized multi-view R&D input features is beneficial for predicting early WL in lung cancer radiotherapy, leading to improved performance compared to using conventional DVH and/or CP features.


Assuntos
Reação de Fase Aguda/diagnóstico , Algoritmos , Neoplasias Pulmonares/radioterapia , Aprendizado de Máquina , Radioterapia de Intensidade Modulada/efeitos adversos , Tomografia Computadorizada por Raios X/métodos , Redução de Peso/efeitos da radiação , Reação de Fase Aguda/diagnóstico por imagem , Reação de Fase Aguda/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos
3.
Ultrasound Med Biol ; 41(12): 3120-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26411669

RESUMO

An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem , Processamento de Imagem Assistida por Computador/métodos , Linfonodos/diagnóstico por imagem , Animais , Axila , Células Cultivadas , Metástase Linfática , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos MRL lpr , Microvasos/diagnóstico por imagem , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...