Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(94): eadh2334, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669316

RESUMO

T cells are often absent from human cancer tissues during both spontaneously induced immunity and therapeutic immunotherapy, even in the presence of a functional T cell-recruiting chemokine system, suggesting the existence of T cell exclusion mechanisms that impair infiltration. Using a genome-wide in vitro screening platform, we identified a role for phospholipase A2 group 10 (PLA2G10) protein in T cell exclusion. PLA2G10 up-regulation is widespread in human cancers and is associated with poor T cell infiltration in tumor tissues. PLA2G10 overexpression in immunogenic mouse tumors excluded T cells from infiltration, resulting in resistance to anti-PD-1 immunotherapy. PLA2G10 can hydrolyze phospholipids into small lipid metabolites, thus inhibiting chemokine-mediated T cell mobility. Ablation of PLA2G10's enzymatic activity enhanced T cell infiltration and sensitized PLA2G10-overexpressing tumors to immunotherapies. Our study implicates a role for PLA2G10 in T cell exclusion from tumors and suggests a potential target for cancer immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Regulação para Cima , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Fosfolipases A/imunologia , Fosfolipases A/genética , Fosfolipases A2/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia
4.
Cell Rep ; 35(9): 109201, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077725

RESUMO

The chronic neuro-inflammatory character of multiple sclerosis (MS) suggests that the natural process to resolve inflammation is impaired. This protective process is orchestrated by specialized pro-resolving lipid mediators (SPMs), but to date, the role of SPMs in MS remains largely unknown. Here, we provide in vivo evidence that treatment with the SPM lipoxin A4 (LXA4) ameliorates clinical symptoms of experimental autoimmune encephalomyelitis (EAE) and inhibits CD4+ and CD8+ T cell infiltration into the central nervous system (CNS). Moreover, we show that LXA4 potently reduces encephalitogenic Th1 and Th17 effector functions, both in vivo and in isolated human T cells from healthy donors and patients with relapsing-remitting MS. Finally, we demonstrate that LXA4 affects the spinal cord lipidome by significantly reducing the levels of pro-inflammatory lipid mediators during EAE. Collectively, our findings provide mechanistic insight into LXA4-mediated amelioration of neuro-inflammation and highlight the potential clinical application of LXA4 for MS.


Assuntos
Encéfalo/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Lipidômica , Lipoxinas/farmacologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Linfócitos T/imunologia , Adulto , Animais , Encéfalo/patologia , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Lipoxinas/química , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Medula Espinal/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
5.
Mol Metab ; 31: 138-149, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918915

RESUMO

OBJECTIVE: Recently, we observed that the specialized proresolving mediator (SPM) entity resolvin D1 activates lipoxin A4/formyl peptide receptor 2 (ALX/FPR2), which facilitates cardiac healing and persistent inflammation is a hallmark of impaired cardiac repair in aging. Splenic leukocyte-directed SPMs are essential for the safe clearance of inflammation and cardiac repair after injury; however, the target of SPMs remains undefined in cardiac healing and repair. METHODS: To define the mechanistic basis of ALX/FPR2 as a resolvin D1 target, ALX/FPR2-null mice were examined extensively. The systolic-diastolic heart function was assessed using echocardiography, leukocytes were phenotyped using flow cytometry, and SPMs were quantitated using mass spectrometry. The presence of cardiorenal syndrome was validated using histology and renal markers. RESULTS: Lack of ALX/FPR2 led to the development of spontaneous obesity and diastolic dysfunction with reduced survival with aging. After cardiac injury, ALX/FPR2-/- mice showed lower expression of lipoxygenases (-5, -12, -15) and a reduction in SPMs in the infarcted left ventricle and spleen, indicating nonresolving inflammation. Reduced SPM levels in the infarcted heart and spleen are suggestive of impaired cross-talk between the injured heart and splenic leukocytes, which are required for the resolution of inflammation. In contrast, cyclooxygenases (-1 and -2) were over amplified in the infarcted heart. Together, these results suggest interorgan signaling in which the spleen acts as both an SPM biosynthesizer and supplier in acute heart failure. ALX/FPR2 dysfunction magnified obesogenic cardiomyopathy and renal inflammation (↑NGAL, ↑TNF-α, ↑CCL2, ↑IL-1ß) with elevated plasma creatinine levels in aging mice. At the cellular level, ALX/FPR2-/- mice showed impairment of macrophage phagocytic function ex-vivo with expansion of neutrophils after myocardial infarction. CONCLUSIONS: Lack of ALX/FPR2 induced obesity, reduced the life span, amplified leukocyte dysfunction, and facilitated profound interorgan nonresolving inflammation. Our study shows the integrative and indispensable role of ALX/FPR2 in lipid metabolism, cardiac inflammation-resolution processes, obesogenic aging, and renal homeostasis.


Assuntos
Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Lipoxinas/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Fatores Etários , Animais , Insuficiência Cardíaca/patologia , Humanos , Inflamação/patologia , Lipoxinas/deficiência , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Formil Peptídeo/deficiência , Receptores de Lipoxinas/deficiência
6.
J Allergy Clin Immunol ; 145(1): 335-344, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622689

RESUMO

BACKGROUND: Cysteinyl leukotrienes (CysLTs) are potent prophlogistic mediators in asthmatic patients; however, inhibition of CysLT receptor 1 is not a consistently effective treatment, suggesting additional regulatory mechanisms. Other cysteinyl-containing lipid mediators (LMs) derived from docosahexaenoic acid, namely maresin conjugates in tissue regeneration (MCTRs), were recently discovered. Therefore their production and actions in the lung are of considerable interest. OBJECTIVE: We sought to determine MCTR production, bioactions, and mechanisms in the human lung and in patients with experimental allergic airway inflammation. METHODS: LM metabololipidomic profiling of the lung was performed by using liquid chromatography with tandem mass spectrometry. Donor-derived human precision-cut lung slices were exposed to leukotriene (LT) D4, MCTRs, or both before determination of airway contraction. The actions of exogenous MCTRs on murine allergic host responses were determined in the setting of ovalbumin- and house dust mite-induced lung inflammation. RESULTS: Lipidomic profiling showed that the most abundant cysteinyl LMs in healthy human lungs were MCTRs, whereas CysLTs were most prevalent in patients with disease. MCTRs blocked LTD4-initiated airway contraction in human precision-cut lung slices. In mouse allergic lung inflammation MCTRs were present with temporally regulated production. With ovalbumin-induced inflammation, MCTR1 was most potent for promoting resolution of eosinophils, and MCTR3 potently decreased airway hyperreactivity to methacholine, bronchoalveolar lavage fluid albumin, and serum IgE levels. MCTR1 and MCTR3 inhibited lung eosinophilia after house dust mite-induced inflammation. CONCLUSION: These results identified lung MCTRs that blocked human LTD4-induced airway contraction and promoted resolution of murine allergic airway responses when added exogenously. Together, these findings uncover proresolving mechanisms for lung responses that can be disrupted in patients with disease.


Assuntos
Asma/imunologia , Cisteína , Ácidos Docosa-Hexaenoicos/imunologia , Antagonistas de Leucotrienos/imunologia , Leucotrienos , Lipidômica , Pulmão/imunologia , Animais , Asma/patologia , Cisteína/antagonistas & inibidores , Cisteína/imunologia , Humanos , Leucotrienos/imunologia , Pulmão/patologia , Camundongos
7.
Haematologica ; 105(8): 2056-2070, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31780628

RESUMO

Chronic inflammation is a key pathological hallmark of multiple sclerosis (MS) and suggests that resolution of inflammation, orchestrated by specialized pro-resolving lipid mediators (LM), is impaired. Here, through targeted-metabololipidomics in peripheral blood of patients with MS, we revealed that each disease form was associated with distinct LM profiles that significantly correlated with disease severity. In particular, relapsing and progressive MS patients were associated with high eicosanoids levels, whereas the majority of pro-resolving LM were significantly reduced or below limits of detection and correlated with disease progression. Furthermore, we found impaired expression of several pro-resolving LM biosynthetic enzymes and receptors in blood-derived leukocytes of MS patients. Mechanistically, differentially expressed mediators like LXA4, LXB4, RvD1 and PD1 reduced MS-derived monocyte activation and cytokine production, and inhibited inflammation-induced blood-brain barrier dysfunction and monocyte transendothelial migration. Altogether, these findings reveal peripheral defects in the resolution pathway in MS, suggesting pro-resolving LM as novel diagnostic biomarkers and potentially safe therapeutics.


Assuntos
Monócitos , Esclerose Múltipla , Barreira Hematoencefálica , Eicosanoides , Humanos , Inflamação , Mediadores da Inflamação , Esclerose Múltipla/tratamento farmacológico
9.
Sci Adv ; 5(10): eaax4895, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31681846

RESUMO

Targeting hypoxia-sensitive pathways in immune cells is of interest in treating diseases. Here, we demonstrate that physiologic hypoxia (1% O2), as encountered in bone marrow and spleen, accelerates human M2 macrophage efferocytosis of apoptotic-neutrophils and senescent erythrocytes via lipolysis-dependent biosynthesis of specialized pro-resolving mediators (SPMs), i.e. resolvins, protectins, maresins and lipoxin. SPM-production was enhanced via hypoxia in M2 macrophages interacting with neutrophils and erythrocytes enabling structural elucidation of a novel eicosapentaenoic acid (EPA)-derived resolvin, resolvin E4 (RvE4) that stimulates efferocytosis of senescent erythrocytes and more potently than aspirin in mouse hemorrhagic exudates. In hypoxia, glycolysis inhibition enhanced neutrophil RvE4-SPM biosynthesis. Human macrophage-erythrocyte co-incubations in physiologic hypoxia produced RvE4-SPM from erythrocyte stores of omega-3 fatty acids. These results indicate that hypoxic environments, including bone marrow and spleen as well as sites of inflammation, activate SPM-biosynthetic circuits that in turn stimulate resolution and clearance of senescent erythrocytes and apoptotic neutrophils.


Assuntos
Hipóxia/metabolismo , Metaboloma , Apoptose , Comunicação Celular , Hipóxia Celular , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Glicólise , Hemorragia/patologia , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Masculino , Neutrófilos
10.
J Clin Invest ; 129(12): 5294-5311, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31657786

RESUMO

Resolution of acute inflammation is an active process orchestrated by endogenous mediators and mechanisms pivotal in host defense and homeostasis. The macrophage mediator in resolving inflammation, maresin 1 (MaR1), is a potent immunoresolvent, stimulating resolution of acute inflammation and organ protection. Using an unbiased screening of greater than 200 GPCRs, we identified MaR1 as a stereoselective activator for human leucine-rich repeat containing G protein-coupled receptor 6 (LGR6), expressed in phagocytes. MaR1 specificity for recombinant human LGR6 activation was established using reporter cells expressing LGR6 and functional impedance sensing. MaR1-specific binding to LGR6 was confirmed using 3H-labeled MaR1. With human and mouse phagocytes, MaR1 (0.01-10 nM) enhanced phagocytosis, efferocytosis, and phosphorylation of a panel of proteins including the ERK and cAMP response element-binding protein. These MaR1 actions were significantly amplified with LGR6 overexpression and diminished by gene silencing in phagocytes. Thus, we provide evidence for MaR1 as an endogenous activator of human LGR6 and a novel role of LGR6 in stimulating MaR1's key proresolving functions of phagocytes.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Fagócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Fagocitose , Fosforilação , RNA Interferente Pequeno/metabolismo , Células THP-1
11.
FASEB J ; 33(12): 13794-13807, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589826

RESUMO

Resolution of inflammation is an active process regulated by specialized proresolving mediators where we identified 3 new pathways producing allylic epoxide-derived mediators that stimulate regeneration [i.e., peptido-conjugates in tissue regeneration (CTRs)]. Here, using self-limited Escherichia coli peritonitis in mice, we identified endogenous maresin (MaR) CTR (MCTR), protectin (PD) CTR (PCTR), and resolvin CTR in infectious peritoneal exudates and distal spleens, as well as investigated enzymes involved in their biosynthesis. PCTRs were identified to be temporally regulated in peritoneal exudates and spleens. PCTR1 and MCTR1 were each produced by human recombinant leukotriene (LT) C4 synthase (LTC4S) and glutathione S-transferases (GSTs) [microsomal GST (mGST)2, mGST3, and GST-µ (GSTM)4] from their epoxide precursors [16S,17S-epoxy-PD (ePD) and 13S,14S-epoxy-MaR (eMaR)], with preference for GSTM4. Both eMaR and ePD inhibited LTB4 production by LTA4 hydrolase. LTC4S, mGST2, mGST3, and GSTM4 were each expressed in human M1- and M2-like macrophages where LTC4S inhibition increased CTRs. Finally, PCTR1 showed potent analgesic action. These results demonstrate CTR biosynthesis in mouse peritonitis, human spleens, and human macrophages, as well as identification of key enzymes in these pathways. Moreover, targeting LTC4S increases CTR metabolomes, giving a new strategy to stimulate resolution and tissue regeneration.-Jouvene, C. C., Shay, A. E., Soens, M. A., Norris, P. C., Haeggström, J. Z., Serhan, C. N. Biosynthetic metabolomes of cysteinyl-containing immunoresolvents.


Assuntos
Vias Biossintéticas/fisiologia , Metaboloma/fisiologia , Animais , Células Cultivadas , Escherichia coli/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Peritonite/metabolismo , Peritonite/microbiologia , Baço/metabolismo , Baço/microbiologia
12.
Am J Pathol ; 189(10): 1953-1972, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31547920

RESUMO

Changes in the intestinal lymphatic vascular system, such as lymphatic obstruction, are characteristic features of inflammatory bowel diseases. The lymphatic vasculature forms a conduit to enable resolution of inflammation; this process is driven by specialized endogenous proresolving mediators (SPMs). To evaluate contributions of lymphatic obstruction to intestinal inflammation and to study profiles of SPMs, we generated a novel animal model of lymphatic obstruction using African green monkeys. Follow-up studies were performed at 7, 21, and 61 days. Inflammation was determined by histology. Luminex assays were performed to evaluate chemokine and cytokine levels. In addition, lipid mediator metabololipidomic profiling was performed to identify SPMs. After 7 days, lymphatic obstruction resulted in a localized inflammatory state, paralleled by an increase in inflammatory chemokines and cytokines, which were found to be up-regulated after 7 days but returned to baseline after 21 and 61 days. At the same time, a distinct pattern of SPMs was profiled, with an increase for D-series resolvins, protectins, maresins, and lipoxins at 61 days. These results indicate that intestinal lymphatic obstruction can lead to an acute inflammatory state, accompanied by an increase in proinflammatory mediators, followed by a phase of resolution, paralleled by an increase and decrease of respective SPMs.


Assuntos
Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Enteropatias/metabolismo , Lipídeos/análise , Doenças Linfáticas/metabolismo , Animais , Chlorocebus aethiops , Inflamação/patologia , Enteropatias/patologia , Metabolismo dos Lipídeos , Doenças Linfáticas/patologia , Masculino
13.
Blood ; 134(17): 1458-1468, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31300403

RESUMO

Deep vein thrombosis (DVT) is a common cardiovascular disease with a major effect on quality of life, and safe and effective therapeutic measures to efficiently reduce existent thrombus burden are scarce. Using a comprehensive targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics approach, we established temporal clusters of endogenously biosynthesized specialized proresolving mediators (SPMs) and proinflammatory and prothrombotic lipid mediators during DVT progression in mice. Administration of resolvin D4 (RvD4), an SPM that was enriched at the natural onset of thrombus resolution, significantly reduced thrombus burden, with significantly less neutrophil infiltration and more proresolving monocytes in the thrombus, as well as an increased number of cells in an early apoptosis state. Moreover, RvD4 promoted the biosynthesis of other D-series resolvins involved in facilitating resolution of inflammation. Neutrophils from RvD4-treated mice were less susceptible to an ionomycin-induced release of neutrophil extracellular traps (NETs), a meshwork of decondensed chromatin lined with histones and neutrophil proteins critical for DVT development. These results suggest that delivery of SPMs, specifically RvD4, modulates the severity of thrombo-inflammatory disease in vivo and improves thrombus resolution.


Assuntos
Ácidos Graxos Insaturados/uso terapêutico , Trombose Venosa/tratamento farmacológico , Animais , Progressão da Doença , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação/imunologia , Lipídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Trombose Venosa/imunologia , Trombose Venosa/patologia
14.
Proc Natl Acad Sci U S A ; 116(13): 6292-6297, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30862734

RESUMO

Inflammation in the tumor microenvironment is a strong promoter of tumor growth. Substantial epidemiologic evidence suggests that aspirin, which suppresses inflammation, reduces the risk of cancer. The mechanism by which aspirin inhibits cancer has remained unclear, and toxicity has limited its clinical use. Aspirin not only blocks the biosynthesis of prostaglandins, but also stimulates the endogenous production of anti-inflammatory and proresolving mediators termed aspirin-triggered specialized proresolving mediators (AT-SPMs), such as aspirin-triggered resolvins (AT-RvDs) and lipoxins (AT-LXs). Using genetic and pharmacologic manipulation of a proresolving receptor, we demonstrate that AT-RvDs mediate the antitumor activity of aspirin. Moreover, treatment of mice with AT-RvDs (e.g., AT-RvD1 and AT-RvD3) or AT-LXA4 inhibited primary tumor growth by enhancing macrophage phagocytosis of tumor cell debris and counter-regulating macrophage-secreted proinflammatory cytokines, including migration inhibitory factor, plasminogen activator inhibitor-1, and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. Thus, the pro-resolution activity of AT-resolvins and AT-lipoxins may explain some of aspirin's broad anticancer activity. These AT-SPMs are active at considerably lower concentrations than aspirin, and thus may provide a nontoxic approach to harnessing aspirin's anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Aspirina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Animais , Aspirina/administração & dosagem , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Inflamação/tratamento farmacológico , Lipoxinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Proteínas do Tecido Nervoso/metabolismo , Fagocitose/efeitos dos fármacos , Inativadores de Plasminogênio/metabolismo , Prostaglandinas/metabolismo
15.
Blood ; 133(3): 252-265, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30404812

RESUMO

Resolvins (Rvs), endogenous lipid mediators, play a key role in the resolution of inflammation. Sickle cell disease (SCD), a genetic disorder of hemoglobin, is characterized by inflammatory and vaso-occlusive pathologies. We document altered proresolving events following hypoxia/reperfusion in humanized SCD mice. We demonstrate novel protective actions of 17R-resolvin D1 (17R-RvD1; 7S, 8R, 17R-trihydroxy-4Z, 9E, 11E, 13Z, 15E, 19Z-docosahexaenoic acid) in reducing ex vivo human SCD blood leukocyte recruitment by microvascular endothelial cells and in vivo neutrophil adhesion and transmigration. In SCD mice exposed to hypoxia/reoxygenation, oral administration of 17R -RvD1 reduces systemic/local inflammation and vascular dysfunction in lung and kidney. The mechanism of action of 17R-RvD1 involves (1) enhancement of SCD erythrocytes and polymorphonuclear leukocyte efferocytosis, (2) blunting of NF-κB activation, and (3) a reduction in inflammatory cytokines, vascular activation markers, and E-selectin expression. Thus, 17R-RvD1 might represent a new therapeutic strategy for the inflammatory vasculopathy of SCD.


Assuntos
Anemia Falciforme/complicações , Anti-Inflamatórios não Esteroides/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Nefropatias/prevenção & controle , Pneumonia/prevenção & controle , Animais , Citocinas/metabolismo , Humanos , Nefropatias/etiologia , Nefropatias/patologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Pneumonia/etiologia , Pneumonia/patologia
16.
Sci Rep ; 8(1): 18050, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575798

RESUMO

Specialized pro-resolving mediator(s) (SPMs) are produced from the endogenous ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and accelerate resolution of acute inflammation. We identified specific clusters of SPM in human plasma and serum using LC-MS/MS based lipid mediator (LM) metabololipidomics in two separate laboratories for inter-laboratory validation. The human plasma cluster consisted of resolvin (Rv)E1, RvD1, lipoxin (LX)B4, 18-HEPE, and 17-HDHA, and the human serum cluster consisted of RvE1, RvD1, AT-LXA4, 18-HEPE, and 17-HDHA. Human plasma and serum SPM clusters were increased after ω-3 supplementation (triglyceride dietary supplements or prescription ethyl esters) and low dose intravenous lipopolysaccharide (LPS) challenge. These results were corroborated by parallel determinations with the same coded samples in a second, separate laboratory using essentially identical metabololipidomic operational parameters. In these healthy subjects, two ω-3 supplementation protocols (Study A and Study B) temporally increased the SPM cluster throughout the endotoxin-challenge time course. Study A and Study B were randomized and Study B also had a crossover design with placebo and endotoxin challenge. Endotoxin challenge temporally regulated lipid mediator production in human serum, where pro-inflammatory eicosanoid (prostaglandins and thromboxane) concentrations peaked by 8 hours post-endotoxin and SPMs such as resolvins and lipoxins initially decreased by 2 h and were then elevated at 24 hours. In healthy adults given ω-3 supplementation, the plasma concentration of the SPM cluster (RvE1, RvD1, LXB4, 18-HEPE, and 17-HDHA) peaked at two hours post endotoxin challenge. These results from two separate laboratories with the same samples provide evidence for temporal production of specific pro-resolving mediators with ω-3 supplementation that together support the role of SPM in vivo in inflammation-resolution in humans.


Assuntos
Endotoxinas/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Administração Intravenosa , Adulto , Cromatografia Líquida , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Relação Dose-Resposta a Droga , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/análogos & derivados , Endotoxinas/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Inflamação/induzido quimicamente , Inflamação/dietoterapia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Projetos de Pesquisa/normas , Espectrometria de Massas em Tandem , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 115(37): 9252-9257, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30139917

RESUMO

Epoxyeicosatrienoic acids (EETs) are lipid-derived signaling molecules with cardioprotective and vasodilatory actions. We recently showed that 11,12-EET enhances hematopoietic induction and engraftment in mice and zebrafish. EETs are known to signal via G protein-coupled receptors, with evidence supporting the existence of a specific high-affinity receptor. Identification of a hematopoietic-specific EET receptor would enable genetic interrogation of EET signaling pathways, and perhaps clinical use of this molecule. We developed a bioinformatic approach to identify an EET receptor based on the expression of G protein-coupled receptors in cell lines with differential responses to EETs. We found 10 candidate EET receptors that are expressed in three EET-responsive cell lines, but not expressed in an EET-unresponsive line. Of these, only recombinant GPR132 showed EET-responsiveness in vitro, using a luminescence-based ß-arrestin recruitment assay. Knockdown of zebrafish gpr132b prevented EET-induced hematopoiesis, and marrow from GPR132 knockout mice showed decreased long-term engraftment capability. In contrast to high-affinity EET receptors, GPR132 is reported to respond to additional hydroxy-fatty acids in vitro, and we found that these same hydroxy-fatty acids enhance hematopoiesis in the zebrafish. We conducted structure-activity relationship analyses using both cell culture and zebrafish assays on diverse medium-chain fatty acids. Certain oxygenated, unsaturated free fatty acids showed high activation of GPR132, whereas unoxygenated or saturated fatty acids had lower activity. Absence of the carbon-1 position carboxylic acid prevented activity, suggesting that this moiety is required for receptor activation. GPR132 responds to a select panel of oxygenated polyunsaturated fatty acids to enhance both embryonic and adult hematopoiesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Hematopoese/efeitos dos fármacos , Oxilipinas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Hematopoese/genética , Camundongos , Camundongos Knockout , Oxilipinas/química , Oxilipinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
18.
Pain ; 159(12): 2620-2629, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30130298

RESUMO

Although nonsteroidal anti-inflammatory drugs are the first line of therapeutics for the treatment of mild to moderate somatic pain, they are not generally considered to be effective for neuropathic pain. In the current study, direct activation of spinal Toll-like 4 receptors (TLR4) by the intrathecal (IT) administration of KDO2 lipid A (KLA), the active component of lipopolysaccharide, elicits a robust tactile allodynia that is unresponsive to cyclooxygenase inhibition, despite elevated expression of cyclooxygenase metabolites in the spinal cord. Intrathecal KLA increases 12-lipoxygenase-mediated hepoxilin production in the lumbar spinal cord, concurrent with expression of the tactile allodynia. The TLR4-induced hepoxilin production was also observed in primary spinal microglia, but not in astrocytes, and was accompanied by increased microglial expression of the 12/15-lipoxygenase enzyme 15-LOX-1. Intrathecal KLA-induced tactile allodynia was completely prevented by spinal pretreatment with the 12/15-lipoxygenase inhibitor CDC or a selective antibody targeting rat 15-LOX-1. Similarly, pretreatment with the selective inhibitors ML127 or ML351 both reduced activity of the rat homolog of 15-LOX-1 heterologously expressed in HEK-293T cells and completely abrogated nonsteroidal anti-inflammatory drug-unresponsive allodynia in vivo after IT KLA. Finally, spinal 12/15-lipoxygenase inhibition by nordihydroguaiaretic acid (NDGA) both prevents phase II formalin flinching and reverses formalin-induced persistent tactile allodynia. Taken together, these findings suggest that spinal TLR4-mediated hyperpathic states are mediated at least in part through activation of microglial 15-LOX-1.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Lipoxigenases/uso terapêutico , Neuroglia/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Cromatografia Líquida , Inibidores Enzimáticos/uso terapêutico , Lipopolissacarídeos/toxicidade , Masculino , Espectrometria de Massas , Estimulação Física/efeitos adversos , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Receptor 4 Toll-Like/antagonistas & inibidores , Transfecção
19.
J Clin Lipidol ; 12(4): 1047-1060, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29730187

RESUMO

BACKGROUND: Psoriasis (PSO) is an immune-mediated inflammatory disease associated with metabolic and cardiovascular comorbidities. It is now known that resolution of inflammation is an active process locally controlled by specialized proresolving mediators (SPMs), named resolvins (Rvs), protectins, and maresins. OBJECTIVE: It is unknown whether these potent lipid mediators (LMs) are involved in PSO pathophysiology and if the skin and blood have disease-specific SPMs phenotype profiles. METHODS: We used liquid chromatography-tandem mass spectrometry-based LM metabololipidomics to obtain skin and peripheral blood LM profiles from PSO compared to healthy subjects. Some LMs were tested in cell culture experiments with corresponding gene expression and protein concentration analyses. RESULTS: The levels of several LM were significantly elevated in lesional PSO skin compared to nonlesional and skin from healthy subjects. Particularly, RvD5, protectins Dx, and aspirin-triggered forms of lipoxin were present only in lesional PSO skin, whereas protectin D1 was present in nonlesional PSO skin. To determine specific roles of SPMs on skin-related inflammatory cytokines, RvD1 and RvD5 were incubated with human keratinocytes. RvD1 and RvD5 reduced the expression levels of interleukin 24 and S100A12, whereas only RvD1 significantly abrogated interleukin-24 production by keratinocytes. CONCLUSIONS: These findings suggest that an imbalance between locally produced proresolution and proinflammatory LMs identified in PSO skin and blood compartments might play a role in PSO pathophysiology. Moreover, some of the PSO-related cytokines can be modified by specific SPMs and involved mechanisms support investigation of targeting novel proresolving lipid mediators as a therapy for PSO.


Assuntos
Mediadores da Inflamação/sangue , Lipídeos/sangue , Psoríase/patologia , Adulto , Idoso , Estudos de Casos e Controles , Citocinas/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Feminino , Humanos , Mediadores da Inflamação/química , Interleucinas/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lipídeos/química , Lipoxinas/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína S100A12/metabolismo , Adulto Jovem
20.
Biochem Biophys Res Commun ; 504(3): 553-561, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29524409

RESUMO

Metabolomics enables a systems approach to interrogate the bioactive mediators, their pathways and further metabolites involved in the physiology and pathophysiology of human and animal tissues. New metabololipidomic approaches with mass spectrometry presented in this brief review can now be utilized for the identification and profiling of lipid mediator networks that control inflammation-resolution in human blood and healthy and diseased solid tissues. Coagulation of blood is a protective response that prevents excessive bleeding on injury of blood vessels. Here, we review novel approaches to understand the relationship(s) between coagulation and resolution of inflammation and infection. To determine whether coagulation is involved in host-protective actions by lipid mediators, we used a metabololipidomic-based profiling approach with human whole blood (WB) during coagulation. We identified recently temporal clusters of endogenously produced pro-thrombotic and proinflammatory lipid mediators (eicosanoids), as well as specialized proresolving mediators (SPMs) in this vital process. In addition to the classic eicosanoids (prostaglandins, thromboxanes and leukotrienes), a specific SPM cluster was identified that consists of resolvin E1 (RvE1), RvD1, RvD5, lipoxin B4, and maresin 1, each of which present at bioactive concentrations (0.1-1 nM). The removal of adenosine from coagulating blood samples significantly enhances SPM amounts and unleashes the biosynthesis of RvD3, RvD4, and RvD6 evident following rapid snap freezing with centrifugation before extraction and LC-MS-MS. The classic cyclooxygenase inhibitors, celecoxib and indomethacin, that block thromboxanes and prostanoids do not block production of the clot-driven SPM cluster. Unbiased mass cytometry analysis demonstrated that the SPM cluster produced in human blood targets leukocytes at the single-cell level, directly activating extracellular signaling in human neutrophils and monocytes. Human whole blood treated with the components of this SPM cluster enhanced both phagocytosis and killing of Escherichia coli by leukocytes. Thus, we identified a pro-resolving lipid mediator circuit and specific SPM cluster that promotes host defense. This new lipid mediator (LM)-SPM metabololipidomic approach now provides accessible metabolomic profiles in healthy and diseased human tissues, including cancer, for precision and personalized medicine.


Assuntos
Eicosanoides/análise , Metabolismo dos Lipídeos , Lipídeos/análise , Metabolômica/métodos , Animais , Cromatografia Líquida , Eicosanoides/sangue , Eicosanoides/metabolismo , Humanos , Inflamação/metabolismo , Lipídeos/sangue , Lipoxinas/análise , Lipoxinas/sangue , Lipoxinas/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...