Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(9): 12529-12540, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052793

RESUMO

We report on high-quality tellurium oxide waveguides integrated on a low-loss silicon nitride wafer-scale platform. The waveguides consist of silicon nitride strip features, which are fabricated using a standard foundry process and a tellurium oxide coating layer that is deposited in a single post-processing step. We show that by adjusting the Si3N4 strip height and width and TeO2 layer thickness, a small mode area, small bend radius and high optical intensity overlap with the TeO2 can be obtained. We investigate transmission at 635, 980, 1310, 1550 and 2000 nm wavelengths in paperclip waveguide structures and obtain low propagation losses down to 0.6 dB/cm at 2000 nm. These results illustrate the potential for compact linear, nonlinear and active tellurite glass devices in silicon nitride photonic integrated circuits operating from the visible to mid-infrared.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30352016

RESUMO

Migration evaluation involving nano-enabled food contact materials (FCMs) mostly focuses on potential nanoparticle release from new unused products. This may not represent consumer use practices encountered by the FCMs in their lifecycle. In order to determine if product use impacts the release of nanoparticles or other FCM components, it is necessary to perform migration evaluations under typical consumer use scenarios. A quantitative assessment of nanoparticle release from a commercially available nanosilver-enabled cutting board was performed under five conditions intended to simulate consumer use. Knife motion, washing and scratching scenarios were simulated by linear abrasion using knife blades, scrubbing pads and tungsten carbide burr attachments, respectively. Migration was evaluated using water and 3% acetic acid as food simulants. Low concentrations of silver (Ag) were detected in water simulants, a small portion (<4 ng dm-2) in the form of silver nanoparticles (AgNPs) with particle number concentrations on the order of 106 particles dm-2. Median particle diameter was 40 nm. Nanoparticle release into water was observed under all five consumer use scenarios studied, however there was no correlation with the different levels of stress simulated.


Assuntos
Contaminação de Alimentos/análise , Embalagem de Alimentos , Nanopartículas Metálicas/análise , Prata/análise , Ácido Acético/química , Inocuidade dos Alimentos , Humanos , Tamanho da Partícula , Propriedades de Superfície , Água/química
3.
J Prosthet Dent ; 90(5): 452-8, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14586309

RESUMO

STATEMENT OF PROBLEM: The biocompatibility of new dental ceramics has not been assessed with the same scrutiny as has been applied to alloys and composites. Yet, the biocompatibility of ceramics is critical to the long-term success of dental prostheses because ceramics are in close contact with oral tissues for extended periods. MATERIAL AND METHODS: Five dental ceramics (2 traditional feldspathic veneer porcelains [Vita Omega and Duceragold], 2 lithium disilicate pressable materials [Stylepress and Empress-2], and a pressable leucite-based material [Empress-1]) were tested for their ability to alter cellular mitochondrial dehydrogenase activity after fabrication using a tetrazolium assay, after aging for 2 weeks in a biologic solution and after post-aging polishing with either a fine diamond or diamond polishing paste. Cellular responses were compared with polytetrafluoroethylene controls (analysis of variance, Tukey pairwise post-hoc comparison, alpha=.05). RESULTS: The feldspathic porcelains caused only mild (<25% of controls) mitochondrial suppression regardless of aging or polishing. The pressable leucite-based material initially caused a 5% stimulation (not significant) of mitochondrial activity, which decreased significantly (P<.05) by 30% with aging to levels comparable to the feldspathic porcelains, and did not change with polishing. Both lithium disilicate materials caused an initial suppression of mitochondrial activity that decreased significantly with aging, but Empress-2 was severely cytotoxic initially (<20% of controls, P<.01), and became more cytotoxic again after polishing. Stylepress was less cytotoxic initially (85% of controls, not significant) and did not become cytotoxic again after polishing. CONCLUSIONS: Dental ceramics are not equivalent in their in vitro biologic effects, even within the same class of material, and biologic safety should not be assumed. Most ceramics caused only mild in vitro suppression of cell function to levels that would be acceptable on the basis of standards used to evaluate alloys and composites. However, 1 Li-disilicate material (Empress-2) exhibited cytotoxicity that would not be deemed biologically acceptable on the basis of prevailing empirical standards for dental alloys and composites.


Assuntos
Materiais Biocompatíveis/toxicidade , Cerâmica/toxicidade , Materiais Dentários/toxicidade , Silicatos de Alumínio/toxicidade , Análise de Variância , Animais , Células 3T3 BALB/efeitos dos fármacos , Corantes , Polimento Dentário , Porcelana Dentária/toxicidade , Compostos de Lítio/toxicidade , Análise por Pareamento , Teste de Materiais , Camundongos , Mitocôndrias/efeitos dos fármacos , Politetrafluoretileno/toxicidade , Compostos de Potássio/toxicidade , Succinato Desidrogenase/efeitos dos fármacos , Propriedades de Superfície , Sais de Tetrazólio , Tiazóis , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...