Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 8(20): eabm9303, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584214

RESUMO

Plasmonic catalysis holds promise for opening new reaction pathways inaccessible thermally or for improving the efficiency of chemical processes. We report a gold stripe waveguide along which infrared (λ0 ~ 1350 nanometers) surface plasmon polaritons (SPPs) propagate, operating simultaneously as an electrochemical working electrode. Cyclic voltammograms obtained under SPP excitation enable oxidative processes involving energetic holes to be investigated separately from reductive processes involving energetic electrons. Under SPP excitation, redox currents increase by 10×, redox potentials decrease by ~2× and split in correlation with photon energy, and the charge transfer resistance drops by ~2× as measured using electrochemical impedance spectroscopy. The temperature of the working electrode was monitored in situ, ruling out thermal effects. Chronoamperometry measurements with SPPs modulated at 600 hertz yield a commensurately modulated current response, ruling out thermally enhanced mass transport. Our observations indicate opening of optically controlled nonequilibrium redox channels associated with energetic carrier transfer to the redox species.

2.
Appl Opt ; 58(11): 2994-3002, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044904

RESUMO

Long-range surface plasmon polariton waveguides consisting of Au stripes integrated with input and output grating couplers embedded in thick Cytop claddings are proposed and demonstrated experimentally. Under the right conditions, grating couplers enable broadside (top) coupling with good efficiency while producing a low level of background light. The scheme does not require high-quality input and output edge facets, and it simplifies optical alignments. We demonstrate coupling using a cleaved bow-tie fiber and a lensed fiber, and we determine the grating coupling efficiencies in both cases over a broad operating wavelength range. The lensed fiber produces a better overlap with the long-range surface plasmon mode of interest and thus results in a better coupling efficiency with essentially no background light as observed on an infrared camera. The measurements are compared with theoretical results obtained using a realistic model of the structures, including out-of-plane curvature in the grating profile resulting from our fabrication process. The coupling scheme along with the surface plasmon waveguides hold strong potential for biosensing applications.

3.
Nanotechnology ; 30(5): 054003, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30511659

RESUMO

In last few decades, micro- and nano-fabrication techniques based on photolithography and electron beam lithography have advanced greatly, mainly in the field of semiconductor fabrication. Such techniques are generally transferrable to the fabrication of plasmonic structures and metamaterials. However, plasmonic devices often require a transparent insulating substrate to be operational at visible or near-infrared wavelengths. Here we report a resist-on-metal bilayer lift-off technique enabling the fabrication of plasmonic structures on insulating substrates. The metal layer under the resist eliminates major difficulties in lithography, such as charging during electron beam exposure and uncontrolled diffuse optical scattering during photolithography. In addition, the resist-on-metal bilayer can be migrated to different substrates with minimal process alteration, because the material properties of the substrate, such as secondary electron emission or optical reflectance, become irrelevant due to the shielding provided by the metal layer. As demonstrations, we fabricate large-scale plasmonic waveguides and Bragg gratings, adiabatically-modulated plasmonic waveguide couplers, and plasmonic nanoantenna arrays using the resist-on-metal bilayer lift-off process. The process can also be used to define structures formed of other materials such as dielectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...