Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Phenomics ; 6: 0181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726389

RESUMO

Leaves, crucial for plant physiology, exhibit various morphological traits that meet diverse functional needs. Traditional leaf morphology quantification, largely 2-dimensional (2D), has not fully captured the 3-dimensional (3D) aspects of leaf function. Despite improvements in 3D data acquisition, accurately depicting leaf morphologies, particularly at the edges, is difficult. This study proposes a method for 3D leaf edge reconstruction, combining 2D image segmentation with curve-based 3D reconstruction. Utilizing deep-learning-based instance segmentation for 2D edge detection, structure from motion for estimation of camera positions and orientations, leaf correspondence identification for matching leaves among images, and curve-based 3D reconstruction for estimating 3D curve fragments, the method assembles 3D curve fragments into a leaf edge model through B-spline curve fitting. The method's performances were evaluated on both virtual and actual leaves, and the results indicated that small leaves and high camera noise pose greater challenges to reconstruction. We developed guidelines for setting a reliability threshold for curve fragments, considering factors occlusion, leaf size, the number of images, and camera error; the number of images had a lesser impact on this threshold compared to others. The method was effective for lobed leaves and leaves with fewer than 4 holes. However, challenges still existed when dealing with morphologies exhibiting highly local variations, such as serrations. This nondestructive approach to 3D leaf edge reconstruction marks an advancement in the quantitative analysis of plant morphology. It is a promising way to capture whole-plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.

2.
PLoS Comput Biol ; 19(7): e1010581, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37471283

RESUMO

Despite substantial variation in leaf vein architectures among angiosperms, a typical hierarchical network pattern is shared within clades. Functional demands (e.g., hydraulic conductivity, transpiration efficiency, and tolerance to damage and blockage) constrain the network structure of leaf venation, generating a biased distribution in the morphospace. Although network structures and their diversity are crucial for understanding angiosperm venation, previous studies have relied on simple morphological measurements (e.g., length, diameter, branching angles, and areole area) and their derived statistics to quantify phenotypes. To better understand the morphological diversities and constraints on leaf vein networks, we developed a simple, high-throughput phenotyping workflow for the quantification of vein networks and identified leaf venation-specific morphospace patterns. The proposed method involves four processes: leaf image acquisition using a feasible system, leaf vein segmentation based on a deep neural network model, network extraction as an undirected graph, and network feature calculation. To demonstrate the proposed method, we applied it to images of non-chemically treated leaves of five species for classification based on network features alone, with an accuracy of 90.6%. By dimensionality reduction, a one-dimensional morphospace, along which venation shows variation in loopiness, was identified for both untreated and cleared leaf images. Because the one-dimensional distribution patterns align with the Pareto front that optimizes transport efficiency, construction cost, and robustness to damage, as predicted by the earlier theoretical study, our findings suggested that venation patterns are determined by a functional trade-off. The proposed network feature-based method is a useful morphological descriptor, providing a quantitative representation of the topological aspects of venation and enabling inverse mapping to leaf vein structures. Accordingly, our approach is promising for analyses of the functional and structural properties of veins.


Assuntos
Magnoliopsida , Folhas de Planta , Folhas de Planta/anatomia & histologia , Redes Neurais de Computação , Transporte Biológico
3.
Evolution ; 77(8): 1864-1873, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37314118

RESUMO

Despite the morphological diversity of organisms, they only occupy a fraction of the theoretically possible spectrum (i.e., morphospace) and have been studied on several taxa. Such morphospace occupation patterns are formed through evolutionary processes under multiple constraints. In this study, we discovered a differential morphospace occupation pattern between terrestrial and aquatic gastropods and subsequently attempted to quantitatively understand these differences through morphospace analysis. These differential occupation patterns between terrestrial and aquatic species were observed in the morphospace of spire height and aperture inclination, including a bimodal distribution of shell height in terrestrial species alongside the absence of high-spired shells with high aperture inclination. Although terrestrial species were distributed along optimal lines of shell instability and shell hindrance to locomotion, aquatic species were distributed not only along this line but also within a suboptimal region of the low spire with low inclination. Based on numerical simulation and biometric analysis, here we propose the hypothesis that this difference was caused by the aquatic species being able to adopt a posture with the growth direction perpendicular to the substrate due to reduced functional demands. Our results provided an ultimate explanation for the differential occupation patterns between habitats alongside an overview of the morphospace.


Assuntos
Gastrópodes , Animais , Ecossistema , Evolução Biológica , Simulação por Computador , Biometria
4.
Microbiol Immunol ; 67(1): 22-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36258658

RESUMO

Smoking is one of the risk factors most closely related to the severity of coronavirus disease 2019 (COVID-19). However, the relationship between smoking history and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is unknown. In this study, we evaluated the ACE2 expression level in the lungs of current smokers, ex-smokers, and nonsmokers. The ACE2 expression level of ex-smokers who smoked cigarettes until recently (cessation period shorter than 6 months) was higher than that of nonsmokers and ex-smokers with a long history of nonsmoking (cessation period longer than 6 months). We also showed that the efficiency of SARS-CoV-2 infection was enhanced in a manner dependent on the angiotensin-converting enzyme 2 (ACE2) expression level. Using RNA-seq analysis on the lungs of smokers, we identified that the expression of inflammatory signaling genes was correlated with ACE2 expression. Notably, with increasing duration of smoking cessation among ex-smokers, not only ACE2 expression level but also the expression levels of inflammatory signaling genes decreased. These results indicated that smoking enhances the expression levels of ACE2 and inflammatory signaling genes. Our data suggest that the efficiency of SARS-CoV-2 infection is enhanced by smoking-mediated upregulation of ACE2 expression level.


Assuntos
COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo , Fumar/efeitos adversos
5.
Breed Sci ; 72(1): 19-30, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36045892

RESUMO

The morphological traits of plants contribute to many important functional features such as radiation interception, lodging tolerance, gas exchange efficiency, spatial competition between individuals and/or species, and disease resistance. Although the importance of plant phenotyping techniques is increasing with advances in molecular breeding strategies, there are barriers to its advancement, including the gap between measured data and phenotypic values, low quantitativity, and low throughput caused by the lack of models for representing morphological traits. In this review, we introduce morphological descriptors that can be used for phenotyping plant morphological traits. Geometric morphometric approaches pave the way to a general-purpose method applicable to single units. Hierarchical structures composed of an indefinite number of multiple elements, which is often observed in plants, can be quantified in terms of their multi-scale topological characteristics using topological data analysis. Theoretical morphological models capture specific anatomical structures, if recognized. These morphological descriptors provide us with the advantages of model-based plant phenotyping, including robust quantification of limited datasets. Moreover, we discuss the future possibilities that a system of model-based measurement and model refinement would solve the lack of morphological models and the difficulties in scaling out the phenotyping processes.

6.
PLoS One ; 17(7): e0270660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857749

RESUMO

SfM/MVS photogrammetry has received increasing attention due to its convenience, broadening the range of its applications into archaeology and anthropology. Because the accuracy of SfM/MVS depends on photography, one important issue is that incorrect or low-density point clouds are found in 3D models due to poor overlapping between images. A systematic way of taking photographs solve these problems, though it has not been well established and the accuracy has not been examined either, with some exceptions. The present study aims to (i) develop an efficient method for recording pottery using an automated turntable and (ii) assess its accuracy through a comparison with 3D models made by laser scanning. We recorded relatively simple pottery manufactured by prehistoric farmers in the Japanese archipelago using SfM/MVS photogrammetry and laser scanning. Further, by measuring the Hausdorff distance between 3D models made using these two methods, we show that their difference is negligibly small, suggesting that our method is sufficiently accurate to record pottery.


Assuntos
Imageamento Tridimensional , Fotogrametria , Coleta de Dados , Imageamento Tridimensional/métodos , Lasers , Fotogrametria/métodos , Fotografação
7.
Sci Rep ; 12(1): 4054, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260741

RESUMO

Trees are thought to have acquired a mechanically optimized shape through evolution, but a scientific methodology to investigate the mechanical rationality of tree morphology remains to be established. The aim of this study was to develop a new method for 3D reconstruction of actual tree shape and to establish a theoretical formulation for elucidating the structure and function of tree branches. We obtained 3D point cloud data of tree shape of Japanese zelkova (Zelkova serrata) and Japanese larch (Larix kaempferi) using the NavVis Lidar scanner, then applied a cylinder structure extraction from point cloud data with error estimation. We then formulated the mechanical stress of branches under gravity using the elastic theory, and performed finite element method simulations to evaluate the mechanical characteristics. Subsequently, we constructed a mechanics-based theoretical formulation of branch development that ensures constant bending stress produces various branching patterns depending on growth properties. The derived theory recapitulates the trade-off among branch growth anisotropy, stress-gravity length, and branch shape, which may open the quantitative way to evaluate mechanical and morphological rationality of tree branches.


Assuntos
Larix , Árvores , Análise de Elementos Finitos , Gravitação , Estresse Mecânico
8.
PLoS Med ; 18(7): e1003660, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228712

RESUMO

BACKGROUND: Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. METHODS AND FINDINGS: A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d-1 (95% CI: 1.06 to 1.27 d-1), 0.777 d-1 (0.716 to 0.838 d-1), and 0.450 d-1 (0.378 to 0.522 d-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). Subsequently, we mimicked randomized controlled trials of antivirals by simulation. An antiviral effect causing a 95% to 99% reduction in viral replication was added to the model. To be realistic, we assumed that randomization and treatment are initiated with some time lag after symptom onset. Using the duration of virus shedding as an outcome, the sample size to detect a statistically significant mean difference between the treatment and placebo groups (1:1 allocation) was 13,603 and 11,670 (when the antiviral effect was 95% and 99%, respectively) per group if all patients are enrolled regardless of timing of randomization. The sample size was reduced to 584 and 458 (when the antiviral effect was 95% and 99%, respectively) if only patients who are treated within 1 day of symptom onset are enrolled. We confirmed the sample size was similarly reduced when using cumulative viral load in log scale as an outcome. We used a conventional virus dynamics model, which may not fully reflect the detailed mechanisms of viral dynamics of SARS-CoV-2. The model needs to be calibrated in terms of both parameter settings and model structure, which would yield more reliable sample size calculation. CONCLUSIONS: In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ensaios Clínicos Controlados Aleatórios como Assunto , Tamanho da Amostra , Humanos , Modelos Biológicos , SARS-CoV-2 , Resultado do Tratamento , Carga Viral , Replicação Viral , Eliminação de Partículas Virais
9.
Front Plant Sci ; 12: 637694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135918

RESUMO

Recent advances in unmanned aerial vehicle (UAV) remote sensing and image analysis provide large amounts of plant canopy data, but there is no method to integrate the large imagery datasets with the much smaller manually collected datasets. A simple geographic information system (GIS)-based analysis for a UAV-supported field study (GAUSS) analytical framework was developed to integrate these datasets. It has three steps: developing a model for predicting sample values from UAV imagery, field gridding and trait value prediction, and statistical testing of predicted values. A field cultivation experiment was conducted to examine the effectiveness of the GAUSS framework, using a soybean-wheat crop rotation as the model system Fourteen soybean cultivars and subsequently a single wheat cultivar were grown in the same field. The crop rotation benefits of the soybeans for wheat yield were examined using GAUSS. Combining manually sampled data (n = 143) and pixel-based UAV imagery indices produced a large amount of high-spatial-resolution predicted wheat yields (n = 8,756). Significant differences were detected among soybean cultivars in their effects on wheat yield, and soybean plant traits were associated with the increases. This is the first reported study that links traits of legume plants with rotational benefits to the subsequent crop. Although some limitations and challenges remain, the GAUSS approach can be applied to many types of field-based plant experimentation, and has potential for extensive use in future studies.

10.
Hortic Res ; 8(1): 49, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642580

RESUMO

Haplotypes provide useful information for genomics-based approaches, genomic prediction, and genome-wide association study. As a small number of superior founders have contributed largely to the breeding history of fruit trees, the information of founder haplotypes may be relevant for performing the genomics-based approaches in these plants. In this study, we proposed a method to estimate 14 haplotypes from 7 founders and automatically trace the haplotypes forward to apple parental (185 varieties) and breeding (659 F1 individuals from 16 full-sib families) populations based on 11,786 single-nucleotide polymorphisms, by combining multiple algorithms. Overall, 92% of the single-nucleotide polymorphisms information in the parental and breeding populations was characterized by the 14 founder haplotypes. The use of founder haplotype information improved the accuracy of genomic prediction in 7 traits and the resolution of genome-wide association study in 13 out of 27 fruit quality traits analyzed in this study. We also visualized the significant propagation of the founder haplotype with the largest genetic effect in genome-wide association study over the pedigree tree of the parental population. These results suggest that the information of founder haplotypes can be useful for not only genetic improvement of fruit quality traits in apples but also for understanding the selection history of founder haplotypes in the breeding program of Japanese apple varieties.

11.
Breed Sci ; 71(1): 51-61, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33762876

RESUMO

Plants require water, but a deficit or excess of water can negatively impact their growth and functioning. Soil flooding, in which root-zone is filled with excess water, restricts oxygen diffusion into the soil. Global climate change is increasing the risk of crop yield loss caused by flooding, and the development of flooding tolerant crops is urgently needed. Root anatomical traits are essential for plants to adapt to drought and flooding, as they determine the balance between the rates of water and oxygen transport. The stele contains xylem and the cortex contains aerenchyma (gas spaces), which respectively contribute to water uptake from the soil and oxygen supply to the roots; this implies that there is a trade-off between the ratio of cortex and stele sizes with respect to adaptation to drought or flooding. In this review, we analyze recent advances in the understanding of root anatomical traits that confer drought and/or flooding tolerance to plants and illustrate the trade-off between cortex and stele sizes. Moreover, we introduce the progress that has been made in modelling and fully automated analyses of root anatomical traits and discuss how key root anatomical traits can be used to improve crop tolerance to soil flooding.

13.
Ecol Evol ; 10(21): 12318-12326, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209290

RESUMO

Recent advances in Unmanned Aerial Vehicle (UAVs) and image processing have made high-throughput field phenotyping possible at plot/canopy level in the mass grown experiment. Such techniques are now expected to be used for individual level phenotyping in the single grown experiment.We found two main challenges of phenotyping individual plants in the single grown experiment: plant segmentation from weedy backgrounds and the estimation of complex traits that are difficult to measure manually.In this study, we proposed a methodological framework for field-based individual plant phenotyping by UAV. Two contributions, which are weed elimination for individual plant segmentation, and complex traits (volume and outline) extraction, have been developed. The framework demonstrated its utility in the phenotyping of Helianthus tuberosus (Jerusalem artichoke), an herbaceous perennial plant species.The proposed framework can be applied to either small and large scale phenotyping experiments.

14.
PLoS One ; 15(10): e0239781, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33045021

RESUMO

Water lilies (Nymphaea spp.) have diverse floral morphologies. Water lilies are not only commonly used as ornamental plants, but they are also important for understanding the diversification of basal angiosperms. Although the diversity in floral morphology of water lily provides useful information for evolutionary biology, horticulture, and horticultural science, it is difficult to describe and analyze the three-dimensional morphology of flowers. In this study, we propose a method to describe the floral morphology of water lily using a three-dimensional theoretical morphological model. The theoretical model was constructed based on three components, i.e., (1) the gradual change in size of floral organs, (2) spiral phyllotaxis, and (3) the interpolation of elevation angles, which were integrated into the model. We generated three-dimensional representation of water lily flowers and visualized theoretical morphospaces by varying each morphological parameter. The theoretical morphospace is a mathematical space of morphological spectrum generated by a theoretical morphological model. These morphospaces seems to display the large part of morphological variations of water lily. We measured morphological parameters of real flowers based on our theoretical model and display the occupation pattern of morphological parameters. We also surveyed the relation between morphological parameters and flower shape descriptions found in a catalog. In some parameters, we found breeders' description can link to our morphological model. In addition, the relationship between the global features of floral morphology and the parameters of the theoretical model was calculated with flower silhouettes simulated with a range of parameter values and the global features of the silhouette. We used two simple indices to assess the global morphological features, which were calculated with the convex hull. The results indicated that our method can effectively provide an objective and quantitative overview of the diversity in the floral morphology of water lily.


Assuntos
Flores/anatomia & histologia , Nymphaea/anatomia & histologia , Evolução Biológica , Modelos Teóricos , Filogenia
15.
PLoS One ; 14(11): e0224695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31751371

RESUMO

Seed shape is an important agronomic trait with continuous variation among genotypes. Therefore, the quantitative evaluation of this variation is highly important. Among geometric morphometrics methods, elliptic Fourier analysis and semi-landmark analysis are often used for the quantification of biological shape variations. Elliptic Fourier analysis is an approximation method to treat contours as a waveform. Semi-landmark analysis is a method of superimposed points in which the differences of multiple contour positions are minimized. However, no detailed comparison of these methods has been undertaken. Moreover, these shape descriptors vary when the scale and direction of the contour and the starting point of the contour trace change. Thus, these methods should be compared with respect to the standardization of the scale and direction of the contour and the starting point of the contour trace. In the present study, we evaluated seed shape variations in a sorghum (Sorghum bicolor Moench) germplasm collection to analyze the association between shape variations and genome-wide single-nucleotide polymorphisms by genomic prediction (GP) and genome-wide association studies (GWAS). In our analysis, we used all possible combinations of three shape description methods and eight standardization procedures for the scale and direction of the contour as well as the starting point of the contour trace; these combinations were compared in terms of GP accuracy and the GWAS results. We compared the shape description methods (elliptic Fourier descriptors and the coordinates of superposed pseudo-landmark points) and found that principal component analysis of their quantitative descriptors yielded similar results. Different scaling and direction standardization procedures caused differences in the principal component scores, average shape, and the results of GP and GWAS.


Assuntos
Grão Comestível/anatomia & histologia , Genômica/métodos , Sementes/anatomia & histologia , Sorghum/genética , Grão Comestível/genética , Análise de Fourier , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único , Sementes/genética , Sorghum/anatomia & histologia
17.
Plant Sci ; 282: 14-22, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31003607

RESUMO

Progress in remote sensing and robotic technologies decreases the hardware costs of phenotyping. Here, we first review cost-effective imaging devices and environmental sensors, and present a trade-off between investment and manpower costs. We then discuss the structure of costs in various real-world scenarios. Hand-held low-cost sensors are suitable for quick and infrequent plant diagnostic measurements. In experiments for genetic or agronomic analyses, (i) major costs arise from plant handling and manpower; (ii) the total costs per plant/microplot are similar in robotized platform or field experiments with drones, hand-held or robotized ground vehicles; (iii) the cost of vehicles carrying sensors represents only 5-26% of the total costs. These conclusions depend on the context, in particular for labor cost, the quantitative demand of phenotyping and the number of days available for phenotypic measurements due to climatic constraints. Data analysis represents 10-20% of total cost if pipelines have already been developed. A trade-off exists between the initial high cost of pipeline development and labor cost of manual operations. Overall, depending on the context and objsectives, "cost-effective" phenotyping may involve either low investment ("affordable phenotyping"), or initial high investments in sensors, vehicles and pipelines that result in higher quality and lower operational costs.


Assuntos
Análise Custo-Benefício/métodos , Plantas/genética , Sistemas de Informação , Fenótipo
18.
Evol Appl ; 12(3): 508-518, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30828371

RESUMO

Accumulating evidence indicates that plants are capable of self/non-self and kin/stranger discrimination. Plants increase biomass of and resource allocation to roots when they encounter roots of conspecific non-self-neighbors, but not when they encounter self roots. Root proliferation usually occurs at the expense of reproductive investment. Therefore, if clonal crops are capable of self/non-self-discrimination, spatially aggregated planting with seedlings of the same genotype may decrease root proliferation and produce a higher yield than planting without considering seedling genotype. To test this idea, we grew Helianthus tuberosus (Jerusalem artichoke) in pot and field conditions and examined self/non-self-discrimination and the effectiveness of genotype-aggregated planting. Plants grown in self pairs allocated less to root biomass than plants grown in non-self pairs in both pot and field conditions; in field conditions, the self pairs produced 40% more tubers by weight than the non-self pairs. When six sprouts from seed tuber of two different genotypes were grown together, with the two genotypes planted aggregately (AGG) or alternately (ALT), plants in the AGG group produced 14% more tubers than plants in the ALT group. These results suggest that spatial aggregation of genotypes increases tuber production in H. tuberosus. Because we found no evidence for trade-offs between root biomass and tuber production, suppression of root proliferation may not be the only mechanism behind the benefits of genotype aggregation. By applying the concept of self/non-self-discrimination, farmers can increase crop production without additional external inputs or expansion of agricultural land use.

19.
Hortic Res ; 5: 74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564372

RESUMO

In orchards, measuring crown characteristics is essential for monitoring the dynamics of tree growth and optimizing farm management. However, it lacks a rapid and reliable method of extracting the features of trees with an irregular crown shape such as trained peach trees. Here, we propose an efficient method of segmenting the individual trees and measuring the crown width and crown projection area (CPA) of peach trees with time-series information, based on gathered images. The images of peach trees were collected by unmanned aerial vehicles in an orchard in Okayama, Japan, and then the digital surface model was generated by using a Structure from Motion (SfM) and Multi-View Stereo (MVS) based software. After individual trees were identified through the use of an adaptive threshold and marker-controlled watershed segmentation in the digital surface model, the crown widths and CPA were calculated, and the accuracy was evaluated against manual delineation and field measurement, respectively. Taking manual delineation of 12 trees as reference, the root-mean-square errors of the proposed method were 0.08 m (R 2 = 0.99) and 0.15 m (R 2 = 0.93) for the two orthogonal crown widths, and 3.87 m2 for CPA (R 2 = 0.89), while those taking field measurement of 44 trees as reference were 0.47 m (R 2 = 0.91), 0.51 m (R 2 = 0.74), and 4.96 m2 (R 2 = 0.88). The change of growth rate of CPA showed that the peach trees grew faster from May to July than from July to September, with a wide variation in relative growth rates among trees. Not only can this method save labour by replacing field measurement, but also it can allow farmers to monitor the growth of orchard trees dynamically.

20.
Front Plant Sci ; 9: 1544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405675

RESUMO

Sorghum (Sorghum bicolor L. Moench) is a C4 tropical grass that plays an essential role in providing nutrition to humans and livestock, particularly in marginal rainfall environments. The timing of head development and the number of heads per unit area are key adaptation traits to consider in agronomy and breeding but are time consuming and labor intensive to measure. We propose a two-step machine-based image processing method to detect and count the number of heads from high-resolution images captured by unmanned aerial vehicles (UAVs) in a breeding trial. To demonstrate the performance of the proposed method, 52 images were manually labeled; the precision and recall of head detection were 0.87 and 0.98, respectively, and the coefficient of determination (R 2) between the manual and new methods of counting was 0.84. To verify the utility of the method in breeding programs, a geolocation-based plot segmentation method was applied to pre-processed ortho-mosaic images to extract >1000 plots from original RGB images. Forty of these plots were randomly selected and labeled manually; the precision and recall of detection were 0.82 and 0.98, respectively, and the coefficient of determination between manual and algorithm counting was 0.56, with the major source of error being related to the morphology of plants resulting in heads being displayed both within and outside the plot in which the plants were sown, i.e., being allocated to a neighboring plot. Finally, the potential applications in yield estimation from UAV-based imagery from agronomy experiments and scouting of production fields are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...