Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
EBioMedicine ; 89: 104459, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796231

RESUMO

BACKGROUND: Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardiovascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS. METHODS: We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts. FINDINGS: We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. INTERPRETATION: We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts. FUNDING: ERC (No. 850622), Canadian Institutes of Health Research, Canada Research Chairs and Compute Canada, Swedish National Infrastructure for Computing.


Assuntos
Endocanabinoides , Síndrome do QT Longo , Animais , Cobaias , Potenciais de Ação , Mutação , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Canadá , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
2.
Commun Biol ; 5(1): 1372, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517642

RESUMO

Anion exchanger 1 (AE1, band 3) is a major membrane protein of red blood cells and plays a key role in acid-base homeostasis, urine acidification, red blood cell shape regulation, and removal of carbon dioxide during respiration. Though structures of the transmembrane domain (TMD) of three SLC4 transporters, including AE1, have been resolved previously in their outward-facing (OF) state, no mammalian SLC4 structure has been reported in the inward-facing (IF) conformation. Here we present the cryoEM structures of full-length bovine AE1 with its TMD captured in both IF and OF conformations. Remarkably, both IF-IF homodimers and IF-OF heterodimers were detected. The IF structures feature downward movement in the core domain with significant unexpected elongation of TM11. Molecular modeling and structure guided mutagenesis confirmed the functional significance of residues involved in TM11 elongation. Our data provide direct evidence for an elevator-like mechanism of ion transport by an SLC4 family member.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Proteínas de Membrana Transportadoras , Bovinos , Animais , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos , Transporte de Íons
3.
J Am Chem Soc ; 144(32): 14564-14577, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35925797

RESUMO

The voltage-dependent anion channel (VDAC) is a ß-barrel channel of the mitochondrial outer membrane (MOM) that passively transports ions, metabolites, polypeptides, and single-stranded DNA. VDAC responds to a transmembrane potential by "gating," i.e. transitioning to one of a variety of low-conducting states of unknown structure. The gated state results in nearly complete suppression of multivalent mitochondrial metabolite (such as ATP and ADP) transport, while enhancing calcium transport. Voltage gating is a universal property of ß-barrel channels, but VDAC gating is anomalously sensitive to transmembrane potential. Here, we show that a single residue in the pore interior, K12, is responsible for most of VDAC's voltage sensitivity. Using the analysis of over 40 µs of atomistic molecular dynamics (MD) simulations, we explore correlations between motions of charged residues inside the VDAC pore and geometric deformations of the ß-barrel. Residue K12 is bistable; its motions between two widely separated positions along the pore axis enhance the fluctuations of the ß-barrel and augment the likelihood of gating. Single channel electrophysiology of various K12 mutants reveals a dramatic reduction of the voltage-induced gating transitions. The crystal structure of the K12E mutant at a resolution of 2.6 Å indicates a similar architecture of the K12E mutant to the wild type; however, 60 µs of atomistic MD simulations using the K12E mutant show restricted motion of residue 12, due to enhanced connectivity with neighboring residues, and diminished amplitude of barrel motions. We conclude that ß-barrel fluctuations, governed particularly by residue K12, drive VDAC gating transitions.


Assuntos
Membranas Mitocondriais , Canais de Ânion Dependentes de Voltagem , Potenciais da Membrana , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Canais de Ânion Dependentes de Voltagem/metabolismo
4.
Biophys J ; 121(23): 4585-4599, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36815709

RESUMO

A cationic leak current known as an "omega current" may arise from mutations of the first charged residue in the S4 of the voltage sensor domains of sodium and potassium voltage-gated channels. The voltage-sensing domains (VSDs) in these mutated channels act as pores allowing nonspecific passage of cations, such as Li+, K+, Cs+, and guanidinium. Interestingly, no omega currents have been previously detected in the nonswapped voltage-gated potassium channels such as the human-ether-a-go-go-related (hERG1), hyperpolarization-activated cyclic nucleotide-gated, and ether-a-go-go channels. In this work, we discovered a novel omega current by mutating the first charged residue of the S4 of the hERG1, K525 to serine. To characterize this omega current, we used various probes, including the hERG1 pore domain blocker, dofetilide, to show that the omega current does not require cation flux via the canonical pore domain. In addition, the omega flux does not cross the conventional selectivity filter. We also show that the mutated channel (K525S hERG1) conducts guanidinium. These data are indicative of the formation of an omega current channel within the VSD. Using molecular dynamics simulations with replica-exchange umbrella sampling simulations of the wild-type hERG1 and the K525S hERG1, we explored the molecular underpinnings governing the cation flow in the VSD of the mutant. We also show that the wild-type hERG1 may form water crevices supported by the biophysical surface accessibility data. Overall, our multidisciplinary study demonstrates that the VSD of hERG1 may act as a cation-selective channel wherein a mutation of the first charged residue in the S4 generates an omega current. Our simulation uncovers the atomistic underpinning of this mechanism.


Assuntos
Canal de Potássio ERG1 , Humanos , Cátions , Simulação de Dinâmica Molecular , Mutação , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética
6.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504015

RESUMO

Rhythmic activity in pacemaker cells, as in the sino-atrial node in the heart, depends on the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. As in depolarization-activated K+ channels, the fourth transmembrane segment S4 functions as the voltage sensor in hyperpolarization-activated HCN channels. But how the inward movement of S4 in HCN channels at hyperpolarized voltages couples to channel opening is not understood. Using voltage clamp fluorometry, we found here that S4 in HCN channels moves in two steps in response to hyperpolarizations and that the second S4 step correlates with gate opening. We found a mutation in sea urchin HCN channels that separate the two S4 steps in voltage dependence. The E356A mutation in S4 shifts the main S4 movement to positive voltages, but channel opening remains at negative voltages. In addition, E356A reveals a second S4 movement at negative voltages that correlates with gate opening. Cysteine accessibility and molecular models suggest that the second S4 movement opens up an intracellular crevice between S4 and S5 that would allow radial movement of the intracellular ends of S5 and S6 to open HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Relógios Biológicos/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Ouriços-do-Mar/metabolismo
7.
Nat Commun ; 12(1): 5690, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584093

RESUMO

SLC4 transporters play significant roles in pH regulation and cellular sodium transport. The previously solved structures of the outward facing (OF) conformation for AE1 (SLC4A1) and NBCe1 (SLC4A4) transporters revealed an identical overall fold despite their different transport modes (chloride/bicarbonate exchange versus sodium-carbonate cotransport). However, the exact mechanism determining the different transport modes in the SLC4 family remains unknown. In this work, we report the cryo-EM 3.4 Å structure of the OF conformation of NDCBE (SLC4A8), which shares transport properties with both AE1 and NBCe1 by mediating the electroneutral exchange of sodium-carbonate with chloride. This structure features a fully resolved extracellular loop 3 and well-defined densities corresponding to sodium and carbonate ions in the tentative substrate binding pocket. Further, we combine computational modeling with functional studies to unravel the molecular determinants involved in NDCBE and SLC4 transport.


Assuntos
Simportadores de Sódio-Bicarbonato/ultraestrutura , Células HEK293 , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/isolamento & purificação
8.
Sci Rep ; 11(1): 13681, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211082

RESUMO

Phosphoprotein phosphatase (PPP) enzymes are ubiquitous proteins involved in cellular signaling pathways and other functions. Here we have traced the origin of the PPP sequences of Eukaryotes and their radiation. Using a bacterial PPP Hidden Markov Model (HMM) we uncovered "BacterialPPP-Like" sequences in Archaea. A HMM derived from eukaryotic PPP enzymes revealed additional, unique sequences in Archaea and Bacteria that were more like the eukaryotic PPP enzymes then the bacterial PPPs. These sequences formed the basis of phylogenetic tree inference and sequence structural analysis allowing the history of these sequence types to be elucidated. Our phylogenetic tree data strongly suggest that eukaryotic PPPs ultimately arose from ancestors in the Asgard archaea. We have clarified the radiation of PPPs within Eukaryotes, substantially expanding the range of known organisms with PPP subtypes (Bsu1, PP7, PPEF/RdgC) previously thought to have a more restricted distribution. Surprisingly, sequences from the Methanosarcinaceae (Euryarchaeota) form a strongly supported sister group to eukaryotic PPPs in our phylogenetic analysis. This strongly suggests an intimate association between an Asgard ancestor and that of the Methanosarcinaceae. This is highly reminiscent of the syntrophic association recently demonstrated between the cultured Lokiarchaeal species Prometheoarchaeum and a methanogenic bacterial species.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Eucariotos/enzimologia , Fosfoproteínas Fosfatases/química , Sequência de Aminoácidos , Animais , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , Eucariotos/química , Eucariotos/genética , Evolução Molecular , Humanos , Fosfoproteínas Fosfatases/genética , Filogenia
9.
Commun Biol ; 4(1): 887, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285340

RESUMO

Voltage-gated KCNQ1 channels contain four separate voltage-sensing domains (VSDs) and a pore domain (PD). KCNQ1 expressed alone opens when the VSDs are in an intermediate state. In cardiomyocytes, KCNQ1 co-expressed with KCNE1 opens mainly when the VSDs are in a fully activated state. KCNE1 also drastically slows the opening of KCNQ1 channels and shifts the voltage dependence of opening by >40 mV. We here show that mutations of conserved residues at the VSD-PD interface alter the VSD-PD coupling so that the mutant KCNQ1/KCNE1 channels open in the intermediate VSD state. Using recent structures of KCNQ1 and KCNE beta subunits in different states, we present a mechanism by which KCNE1 rotates the VSD relative to the PD and affects the VSD-PD coupling of KCNQ1 channels in a non-canonical way, forcing KCNQ1/KCNE1 channels to open in the fully-activated VSD state. This would explain many of the KCNE1-induced effects on KCNQ1 channels.


Assuntos
Ativação do Canal Iônico , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
10.
J Gen Physiol ; 153(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939797

RESUMO

Polyunsaturated fatty acids (PUFAs), but not saturated fatty acids, modulate ion channels such as the cardiac KCNQ1 channel, although the mechanism is not completely understood. Using both simulations and experiments, we find that PUFAs interact directly with the KCNQ1 channel via two different binding sites: one at the voltage sensor and one at the pore. These two amphiphilic binding pockets stabilize the negatively charged PUFA head group by electrostatic interactions with R218, R221, and K316, while the hydrophobic PUFA tail is selectively stabilized by cassettes of hydrophobic residues. The rigid saturated tail of stearic acid prevents close contacts with KCNQ1. By contrast, the mobile tail of PUFA linoleic acid can be accommodated in the crevice of the hydrophobic cassette, a defining feature of PUFA selectivity in KCNQ1. In addition, we identify Y268 as a critical PUFA anchor point underlying fatty acid selectivity. Combined, this study provides molecular models of direct interactions between PUFAs and KCNQ1 and identifies selectivity mechanisms. Long term, this understanding may open new avenues for drug development based on PUFA mechanisms.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Sítios de Ligação , Ácidos Graxos Insaturados , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Xenopus laevis/metabolismo
11.
J Biol Chem ; 296: 100724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33932403

RESUMO

Solute carrier family 4 (SLC4) transporters mediate the transmembrane transport of HCO3-, CO32-, and Cl- necessary for pH regulation, transepithelial H+/base transport, and ion homeostasis. Substrate transport with varying stoichiometry and specificity is achieved through an exchange mechanism and/or through coupling of the uptake of anionic substrates to typically co-transported Na+. Recently solved outward-facing structures of two SLC4 members (human anion exchanger 1 [hAE1] and human electrogenic sodium bicarbonate cotransporter 1 [hNBCe1]) with different transport modes (Cl-/HCO3- exchange versus Na+-CO32- symport) revealed highly conserved three-dimensional organization of their transmembrane domains. However, the exact location of the ion binding sites and their protein-ion coordination motifs are still unclear. In the present work, we combined site identification by ligand competitive saturation mapping and extensive molecular dynamics sampling with functional mutagenesis studies which led to the identification of two substrate binding sites (entry and central) in the outward-facing states of hAE1 and hNBCe1. Mutation of residues in the identified binding sites led to impaired transport in both proteins. We also showed that R730 in hAE1 is crucial for anion binding in both entry and central sites, whereas in hNBCe1, a Na+ acts as an anchor for CO32- binding to the central site. Additionally, protonation of the central acidic residues (E681 in hAE1 and D754 in hNBCe1) alters the ion dynamics in the permeation cavity and may contribute to the transport mode differences in SLC4 proteins. These results provide a basis for understanding the functional differences between hAE1 and hNBCe1 and may facilitate potential drug development for diseases such as proximal and distal renal tubular acidosis.


Assuntos
Proteínas Carreadoras de Solutos/química , Proteínas Carreadoras de Solutos/metabolismo , Sítios de Ligação , Transporte Biológico , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
12.
Nat Commun ; 12(1): 1409, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658490

RESUMO

The lipid regulation of mammalian ion channel function has emerged as a fundamental mechanism in the control of electrical signalling and transport specificity in various cell types. In this work, we combine molecular dynamics simulations, mutagenesis, and electrophysiology to provide mechanistic insights into how lipophilic molecules (ceramide-sphingolipid probe) alter gating kinetics and K+ currents of hERG1. We show that the sphingolipid probe induced a significant left shift of activation voltage, faster deactivation rates, and current blockade comparable to traditional hERG1 blockers. Microseconds-long MD simulations followed by experimental mutagenesis elucidated ceramide specific binding locations at the interface between the pore and voltage sensing domains. This region constitutes a unique crevice present in mammalian channels with a non-swapped topology. The combined experimental and simulation data provide evidence for ceramide-induced allosteric modulation of the channel by a conformational selection mechanism.


Assuntos
Ceramidas/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Ceramidas/química , Ceramidas/farmacologia , Eletrofisiologia/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida
13.
BBA Adv ; 1: 100005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082010

RESUMO

Background: Phosphoprotein phosphatases (PPP) belong to the PPP Sequence family, which in turn belongs to the broader metallophosphoesterase (MPE) superfamily. The relationship between the PPP Sequence family and other members of the MPE superfamily remains unresolved, in particular what transitions took place in an ancestral MPE to ultimately produce the phosphoprotein specific phosphatases (PPPs). Methods: We use structural and sequence alignment data, phylogenetic tree analysis, sequence signature (Weblogo) analysis, in silico protein-peptide modeling data, and in silico mutagenesis to trace a likely route of evolution from MPEs to the PPP Sequence family. Hidden Markov Model (HMM) based iterative database search strategies were utilized to identify PPP Sequence Family members from numerous bacterial groups. Results: Using Mre11 as proxy for an ancestral nuclease-like MPE we trace a possible evolutionary route that alters a single active site substrate binding His-residue to yield a new substrate binding accessory, the "2-Arg-Clamp". The 2-Arg-Clamp is not found in MPEs, but is present in all PPP Sequence family members, where the phosphomonesterase reaction predominates. Variation in position of the clamp arginines and a supplemental sequence loop likely provide substrate specificity for each PPP Sequence family group. Conclusions: Loss of a key substrate binding His-in MPEs opened the path to bind novel substrates and evolution of the 2-Arg-Clamp, a sequence change seen in both bacterial and eukaryotic phosphoprotein phosphatases.General significance: We establish a likely evolutionary route from nuclease-like MPE to PPP Sequence family enzymes, that includes the phosphoprotein phosphatases.

14.
Biophys J ; 119(12): 2584-2592, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189678

RESUMO

The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane and an archetypical ß-barrel channel. Here, we study the effects of temperature on VDAC channels reconstituted in planar lipid membranes at the single- and multichannel levels within the 20°C to 40°C range. The temperature dependence of conductance measured on a single channel in 1 M KCl shows an increase characterized by a 10°C temperature coefficient Q10 = 1.22 ± 0.02, which exceeds that of the bathing electrolyte solution conductivity, Q10 = 1.17 ± 0.01. The rates of voltage-induced channel transition between the open and closed states measured on multichannel membranes also show statistically significant increases, with temperatures that are consistent with activation energy barriers of ∼10 ± 3 kcal/mol. At the same time, the gating thermodynamics, as characterized by the gating charge and voltage of equipartitioning, does not display any measurable temperature dependence. The two parameters stay within 3.2 ± 0.2 elementary charges and 30 ± 2 mV, respectively. Thus, whereas the channel kinetics, specifically its conductance and rates of gating response to voltage steps, demonstrates a clear increase with temperature, the conformational voltage-dependent equilibria are virtually insensitive to temperature. These results, which may be a general feature of ß-barrel channel gating, suggest either an entropy-driven gating mechanism or a role for enthalpy-entropy compensation.


Assuntos
Ativação do Canal Iônico , Canais de Ânion Dependentes de Voltagem , Cinética , Temperatura , Termodinâmica , Canais de Ânion Dependentes de Voltagem/metabolismo
15.
Front Pharmacol ; 11: 914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694995

RESUMO

Human-ether-a-go-go-related channel (hERG1) is the pore-forming domain of the delayed rectifier K+ channel in the heart which underlies the IKr current. The channel has been extensively studied due to its propensity to bind chemically diverse group of drugs. The subsequent hERG1 block can lead to a prolongation of the QT interval potentially leading to an abnormal cardiac electrical activity. The recently solved cryo-EM structure featured a striking non-swapped topology of the Voltage-Sensor Domain (VSD) which is packed against the pore-domain as well as a small and hydrophobic intra-cavity space. The small size and hydrophobicity of the cavity was unexpected and challenges the already-established hypothesis of drugs binding to the wide cavity. Recently, we showed that an amphipathic drug, ivabradine, may favorably bind the channel from the lipid-facing surface and we discovered a mutant (M651T) on the lipid facing domain between the VSD and the PD which inhibited the blocking capacity of the drug. Using multi-microseconds Molecular Dynamics (MD) simulations of wild-type and M651T mutant hERG1, we suggested the block of the channel through the lipid mediated pathway, the opening of which is facilitated by the flexible phenylalanine ring (F656). In this study, we characterize the dynamic interaction of the methionine-aromatic cassette in the S5-S6 helices by combining data from electrophysiological experiments with MD simulations and molecular docking to elucidate the complex allosteric coupling between drug binding to lipid-facing and intra-cavity sites and aromatic cassette dynamics. We investigated two well-established hERG1 blockers (ivabradine and dofetilide) for M651 sensitivity through electrophysiology and mutagenesis techniques. Our electrophysiology data reveal insensitivity of dofetilide to the mutations at site M651 on the lipid facing side of the channel, mirroring our results obtained from docking experiments. Moreover, we show that the dofetilide-induced block of hERG1 occurs through the intracellular space, whereas little to no block of ivabradine is observed during the intracellular application of the drug. The dynamic conformational rearrangement of the F656 appears to regulate the translocation of ivabradine into the central cavity. M651T mutation appears to disrupt this entry pathway by altering the molecular conformation of F656.

16.
Proc Natl Acad Sci U S A ; 117(6): 2795-2804, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980532

RESUMO

The human ether-á-go-go-related gene (hERG1) channel conducts small outward K+ currents that are critical for cardiomyocyte membrane repolarization. The gain-of-function mutation N629D at the outer mouth of the selectivity filter (SF) disrupts inactivation and K+-selective transport in hERG1, leading to arrhythmogenic phenotypes associated with long-QT syndrome. Here, we combined computational electrophysiology with Markov state model analysis to investigate how SF-level gating modalities control selective cation transport in wild-type (WT) and mutant (N629D) hERG1 variants. Starting from the recently reported cryogenic electron microscopy (cryo-EM) open-state channel structure, multiple microseconds-long molecular-dynamics (MD) trajectories were generated using different cation configurations at the filter, voltages, electrolyte concentrations, and force-field parameters. Most of the K+ permeation events observed in hERG1-WT simulations occurred at microsecond timescales, influenced by the spontaneous dehydration/rehydration dynamics at the filter. The SF region displayed conductive, constricted, occluded, and dilated states, in qualitative agreement with the well-documented flickering conductance of hERG1. In line with mutagenesis studies, these gating modalities resulted from dynamic interaction networks involving residues from the SF, outer-mouth vestibule, P-helices, and S5-P segments. We found that N629D mutation significantly stabilizes the SF in a state that is permeable to both K+ and Na+, which is reminiscent of the SF in the nonselective bacterial NaK channel. Increasing the external K+ concentration induced "WT-like" SF dynamics in N629D, in qualitative agreement with the recovery of flickering currents in experiments. Overall, our findings provide an understanding of the molecular mechanisms controlling selective transport in K+ channels with a nonconventional SF sequence.


Assuntos
Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Motivos de Aminoácidos , Canal de Potássio ERG1/genética , Mutação com Ganho de Função , Humanos , Cinética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação de Sentido Incorreto , Potássio/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína
17.
Sci Rep ; 9(1): 18992, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31813931

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Sci Rep ; 9(1): 15260, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649292

RESUMO

Hille's (1971) seminal study of organic cation selectivity of eukaryotic voltage-gated sodium channels showed a sharp size cut-off for ion permeation, such that no ion possessing a methyl group was permeant. Using the prokaryotic channel, NaChBac, we found some similarity and two peculiar differences in the selectivity profiles for small polyatomic cations. First, we identified a diverse group of minimally permeant cations for wildtype NaChBac, ranging in sizes from ammonium to guanidinium and tetramethylammonium; and second, for both ammonium and hydrazinium, the charge-conserving selectivity filter mutation (E191D) yielded substantial increases in relative permeability (PX/PNa). The relative permeabilities varied inversely with relative Kd calculated from 1D Potential of Mean Force profiles (PMFs) for the single cations traversing the channel. Several of the cations bound more strongly than Na+, and hence appear to act as blockers, as well as charge carriers. Consistent with experimental observations, the E191D mutation had little impact on Na+ binding to the selectivity filter, but disrupted the binding of ammonium and hydrazinium, consequently facilitating ion permeation across the NaChBac-like filter. We concluded that for prokaryotic sodium channels, a fine balance among filter size, binding affinity, occupancy, and flexibility seems to contribute to observed functional differences.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Cátions/metabolismo
19.
Mol Pharmacol ; 96(2): 259-271, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182542

RESUMO

Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade. SIGNIFICANCE STATEMENT: The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Ivabradina/farmacologia , Lipídeos de Membrana/metabolismo , Sítios de Ligação , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Ivabradina/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fenetilaminas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Sulfonamidas/farmacologia
20.
Chem Rev ; 119(9): 5775-5848, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30758191

RESUMO

Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Simulação por Computador , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Modelos Biológicos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...