Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 5(3): 553-563, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32373761

RESUMO

Oxide-polymer coatings were formed on the surface of the vanadium-free Ti-15Mo titanium alloy. The Ti alloy surface was modified by the plasma electrolytic oxidation process, and then, the polymer layer of a poly (D, l-lactide-co-glycolide) with doxycycline was formed. The polymer evenly covered the porous oxide layer and filled some of the pores. However, the microstructure of the polymer surface was completely different from that of the PEO layer. The surface morphology, roughness and microstructure of the polymer layer were examined by scanning electron microscopy (SEM) and a confocal microscope. The results confirmed the effectiveness of polymer and doxycycline deposition in their stable chemical forms. The drug analysis was performed by high-performance liquid chromatography. The 1H NMR technique was used to monitor the course of hydrolytic degradation of PLGA. It was shown that the PLGA layer is hydrolysed within a few weeks, and the polyglycolidyl part of the copolymer is hydrolysed to glycolic acid as first and much faster than the polylactide one to lactic acid. This paper presents influence of different microstructures on the biological properties of modified titanium alloys. Cytocompatibility and bacterial adhesion tests were evaluated using osteoblast-like MG-63 cells and using the reference S. aureus and S. epidermidis strains. The results showed that the optimum concentration of doxycycline was found to inhibit the growth of the bacteria and that the layer is still cytocompatible.

2.
Mater Sci Eng C Mater Biol Appl ; 94: 998-1008, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423788

RESUMO

In this paper, the preparation of a functional hybrid coating loaded with a drug (amoxicillin) on a promising titanium alloy - Ti-15Mo alloy is presented. The titanium alloy surface was anodized in solution with bioactive compounds to obtain a porous oxide layer favorable for MG-63 osteoblast-like cell adhesion. Then, a poly(lactide-co-glycolide) (PLGA) loaded with amoxicillin layer was formed using a dip-coating technique to cover the oxide layer, without filling in all of the pores. The morphology of the surface was evaluated using scanning electron microscopy supported by 3D Roughness Reconstruction software. The surface treatment of the Ti-15Mo alloy surface caused the surface roughness to increase up to 1.71 µm. The anodization process caused the Ti-15Mo alloy surface to become slightly more hydrophilic; however, the formation of the PLGA layer loaded with drug increased the contact angle to 96.5°â€¯±â€¯2.2°, respectively. After 4 weeks of polymer layer degradation, the registered signals on the 1H NMR spectrum were identical to the signals registered for lactic acid (LAc), which confirms that the polymer layer was degraded within a short period of time. The concentration of drug released into the artificial saliva was investigated using high-performance liquid chromatography (HPLC) up to 12 h of coatings immersion. During the first hour of coating degradation in artificial saliva, and the concentration of the drug (13 µg/ml) was enough to inhibit bacterial growth of S. aureus and S. epidermidis. These results were confirmed by agar plate diffusion method and evaluation of the minimal inhibitory concentration (MIC). The cytocompatibility of the materials was determined using the osteoblast-like cells MG-63, and the viability and cell morphology (live/dead staining) were also evaluated. The results showed that amoxicillin influences the osteoblast-like MG-63 cells' behavior during cell culture, especially for the first few hours. The influence on the type of surface treatment on MG-63 cell behavior during 7 days of culture is discussed in this paper. To the best of our knowledge, this is the first time that a fast-degrading layer with amoxicillin has been deposited on previously anodized Ti surface. The formation of functional coating may find application as a cytocompatible coating to prevent bacterial adhesion on long-term implant surfaces.


Assuntos
Ligas/química , Amoxicilina/farmacologia , Implantes Dentários , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Titânio/química , Amoxicilina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Eletrodos , Humanos , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética , Saliva/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...