Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299307

RESUMO

A new method for the preparation of polyaniline (PANI) films that have a 2D structure and can record high active mass loading (up to 30 mg cm-2) via acid-assisted polymerization in the presence of concentrated formic acid was developed. This new approach represents a simple reaction pathway that proceeds quickly at room temperature in quantitative isolated yield with the absence of any byproducts and leads to the formation of a stable suspension that can be stored for a prolonged time without sedimentation. The observed stability was explained by two factors: (a) the small size of the obtained rod-like particles (50 nm) and (b) the change of the surface of colloidal PANI particles to a positively charged form by protonation with concentrated formic acid. The films cast from the concentrated suspension were composed of amorphous PANI chains assembled into 2D structures with nanofibrillar morphology. Such PANI films demonstrated fast and efficient diffusion of the ions in liquid electrolyte and showed a pair of revisable oxidation and reduction peaks in cyclic voltammetry. Furthermore, owing to the high mass loading, specific morphology, and porosity, the synthesized polyaniline film was impregnated by a single-ion conducting polyelectrolyte-poly(LiMn-r-PEGMm) and characterized as a novel lightweight all-polymeric cathode material for solid-state Li batteries by cyclic voltammetry and electrochemical impedance spectroscopy techniques.

2.
ACS Appl Polym Mater ; 5(4): 2639-2653, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090422

RESUMO

The proliferation of high-performance thin-film electronics depends on the development of highly conductive solid-state polymeric materials. We report on the synthesis and properties investigation of well-defined cationic and anionic poly(ionic liquid) AB-C type block copolymers, where the AB block was formed by random copolymerization of highly conductive anionic or cationic monomers with poly(ethylene glycol) methyl ether methacrylate, while the C block was obtained by post-polymerization of 2-phenylethyl methacrylate. The resulting ionic block copolymers were found to self-assemble into a lamellar morphology, exhibiting high ionic conductivity (up to 3.6 × 10-6 S cm-1 at 25 °C) and sufficient electrochemical stability (up to 3.4 V vs Ag+/Ag at 25 °C) as well as enhanced viscoelastic (mechanical) performance (storage modulus up to 3.8 × 105 Pa). The polymers were then tested as separators in two all-solid-state electrochemical devices: parallel plate metal-insulator-metal (MIM) capacitors and thin-film transistors (TFTs). The laboratory-scale truly solid-state MIM capacitors showed the start of electrical double-layer (EDL) formation at ∼103 Hz and high areal capacitance (up to 17.2 µF cm-2). For solid-state TFTs, low hysteresis was observed at 10 Hz due to the completion of EDL formation and the devices were found to have low threshold voltages of -0.3 and 1.1 V for p-type and n-type operations, respectively.

3.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056728

RESUMO

This work aims to explore the gas permeation performance of two newly-designed ionic liquids, [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2], in supported ionic liquid membranes (SILM) configuration, as another effort to provide an overall insight on the gas permeation performance of functionalized-ionic liquids with the [C2mim]+ cation. [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] single gas separation performance towards CO2, N2, and CH4 at T = 293 K and T = 308 K were measured using the time-lag method. Assessing the CO2 permeation results, [C2mim][CF3BF3] showed an undermined value of 710 Barrer at 293.15 K and 1 bar of feed pressure when compared to [C2mim][BF4], whereas for the [C2mim][CF3SO2C(CN)2] IL an unexpected CO2 permeability of 1095 Barrer was attained at the same experimental conditions, overcoming the results for the remaining ILs used for comparison. The prepared membranes exhibited diverse permselectivities, varying from 16.9 to 22.2 for CO2/CH4 and 37.0 to 44.4 for CO2/N2 gas pairs. The thermophysical properties of the [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] ILs were also determined in the range of T = 293.15 K up to T = 353.15 K at atmospheric pressure and compared with those for other ILs with the same cation and anion's with similar chemical moieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...