Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(49): 18124-18131, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011263

RESUMO

Although the longevity of superhydrophobic surface (SHS) induced by diffusive gas transfer has been extensively studied, the scaling relation between SHS longevity and undersaturation level of the liquid is still an open question. In this study, we address this question by performing experiments where the plastron decay is visualized by a nonintrusive optical technique based on light reflection, the gas diffusion is introduced by using liquid with low dissolved gas concentrations, and the SHS longevity is measured based on the status of gas on the entire surface. We find that the SHS longevity (tf) follows a scaling relation: tf ∼ (1 - s)-2, where s is the ratio of the gas concentration in liquid to that in the plastron. This scaling relation implies that as the gas is dissolving into the liquid, mass flux J reduces with time as J ∼ t-0.5. Furthermore, we find that the diffusion length LD reduces as the undersaturation level increases, following the scaling relation of LD ∼ (1 - s)-1. Lastly, we show that an SHS with a greater texture depth has a longer longevity and a larger LD. Our results provide a better understanding of SHS longevity in undersaturated liquid.

2.
J Nanobiotechnology ; 19(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397416

RESUMO

Skin is the body's first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


Assuntos
Nanocompostos , Alicerces Teciduais , Cicatrização , Indutores da Angiogênese , Angiopoietinas/metabolismo , Animais , Vasos Sanguíneos , Humanos , Qualidade de Vida , Pele , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular
3.
Tissue Cell ; 68: 101470, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248403

RESUMO

Any significant loss of vision or blindness caused by corneal damages is referred to as corneal blindness. Corneal blindness is the fourth most common cause of blindness worldwide, representing more than 5% of the total blind population. Currently, corneal transplantation is used to treat many corneal diseases. In some cases, implantation of artificial cornea (keratoprosthesis) is suggested after a patient has had a donor corneal transplant failure. The shortage of donors and the side effects of keratoprosthesis are limiting these approaches. Recently, researchers have been actively pursuing new approaches for corneal regeneration because of these limitations. Nowadays, tissue engineering of different corneal layers (epithelium, stroma, endothelium, or full thickness tissue) is a promising approach that has attracted a great deal of interest from researchers and focuses on regenerative strategies using different cell sources and biomaterials. Various sources of corneal and non-corneal stem cells have shown significant advantages for corneal epithelium regeneration applications. Pluripotent stem cells (embryonic stem cells and iPS cells), epithelial stem cells (derived from oral mucus, amniotic membrane, epidermis and hair follicle), mesenchymal stem cells (bone marrow, adipose-derived, amniotic membrane, placenta, umbilical cord), and neural crest origin stem cells (dental pulp stem cells) are the most promising sources in this regard. These cells could also be used in combination with natural or synthetic scaffolds to improve the efficacy of the therapeutic approach. As the ocular surface is exposed to external damage, the number of studies on regeneration of the corneal epithelium is rising. In this paper, we reviewed the stem cell-based strategies for corneal epithelium regeneration.


Assuntos
Epitélio Corneano/fisiopatologia , Regeneração/fisiologia , Transplante de Células-Tronco , Animais , Ensaios Clínicos como Assunto , Humanos , Células-Tronco/citologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...