Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767707

RESUMO

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Assuntos
Proteínas do Sistema Complemento , Modelos Animais de Doenças , Lipopolissacarídeos , Antígenos O , Salmonella enteritidis , Salmonella enteritidis/imunologia , Salmonella enteritidis/patogenicidade , Animais , Antígenos O/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Lipopolissacarídeos/imunologia , Evasão da Resposta Imune , Viabilidade Microbiana , Mariposas/microbiologia , Mariposas/imunologia , Virulência , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Ativação do Complemento , Lepidópteros/imunologia , Lepidópteros/microbiologia
2.
Nat Commun ; 14(1): 6715, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872172

RESUMO

The gastric human pathogen Helicobacter pylori has developed mechanisms to combat stress factors, including reactive oxygen species (ROS). Here, we present a comprehensive study on the redox switch protein HP1021 regulon combining transcriptomic, proteomic and DNA-protein interactions analyses. Our results indicate that HP1021 modulates H. pylori's response to oxidative stress. HP1021 controls the transcription of 497 genes, including 407 genes related to response to oxidative stress. 79 proteins are differently expressed in the HP1021 deletion mutant. HP1021 controls typical ROS response pathways (katA, rocF) and less canonical ones, particularly DNA uptake and central carbohydrate metabolism. HP1021 is a molecular regulator of competence in H. pylori, as HP1021-dependent repression of the comB DNA uptake genes is relieved under oxidative conditions, increasing natural competence. Furthermore, HP1021 controls glucose consumption by directly regulating the gluP transporter and has an important impact on maintaining the energetic balance in the cell.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Regulon/genética , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Multiômica , Oxirredução , DNA/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/genética
3.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939560

RESUMO

Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli. Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.


Assuntos
Adesinas de Escherichia coli/genética , Escherichia coli/genética , Proteínas Hemolisinas/genética , Ferro/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Humanos , Chaperonas Moleculares/genética , Família Multigênica , Mutação , Plasmídeos/genética
4.
Nucleic Acids Res ; 49(12): 6863-6879, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139017

RESUMO

Helicobacter pylori is a gram-negative, microaerophilic, pathogenic bacterium and a widespread colonizer of humans. H. pylori has developed mechanisms that enable it to overcome the harsh environment of the human stomach, including reactive oxygen species (ROS). Interestingly, up to now no typical regulator dedicated to the oxidative-stress response has been discovered. In this work, we reveal that the inhibitor of replication initiation HP1021 functions as a redox switch protein in H. pylori and plays an important role in response to oxidative stress of the gastric pathogen. Each of the two predicted HP1021 domains contains three cysteine residues. We show that the cysteine residues of HP1021 are sensitive to oxidation both in vitro and in vivo, and we demonstrate that HP1021 DNA-binding activity to oriC depends on the redox state of the protein. Moreover, Zn2+ modulates HP1021 affinity towards oriC template DNA. Transcription analysis of selected H. pylori genes by RT-qPCR indicated that HP1021 is directly involved in the oxygen-dependent control of H. pylori fecA3 and gluP genes, which are implicated in response to oxidative stress. In conclusion, HP1021 is a redox switch protein and could be a target for H. pylori control strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/genética , Estresse Oxidativo , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Cátions Bivalentes/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Domínios Proteicos , Transcrição Gênica
5.
Vet Microbiol ; 257: 109095, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940458

RESUMO

Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections and the development of colibacillosis, causing high mortality in farm birds and extensive losses in the poultry industry worldwide. The virulence of APEC is a complex phenomenon associated with numerous mechanisms involving a variety of extracellular and intracellular structures to overcome host barriers. Initial bacterial attachment or adhesion to host cells is vital to bacterial pathogenesis and is determined by various adhesins. These proteins protect pathogens against possible host defense mechanisms, enabling the effective use of other virulence attributes. Considering this property, the current review provides a systematic and in-depth analysis of the latest information on adhesins analyzed in APEC strains. This review discusses in detail each of the adhesin types, such as fimbrial chaperone-usher, fimbrial curli, nonfimbrial and atypical adhesins, and their components, presenting an opportunity to gain a better understanding of different adhesins and mechanisms employed in pathogenesis. Additionally, the article scrutinizes and notes missing information and potential studies that need to be undertaken to develop a complete understanding of APEC adhesion.


Assuntos
Adesinas de Escherichia coli/metabolismo , Aderência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/patogenicidade , Fímbrias Bacterianas/metabolismo , Adesinas de Escherichia coli/genética , Animais , Galinhas/microbiologia , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/microbiologia , Virulência
6.
Mol Microbiol ; 113(2): 338-355, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715026

RESUMO

The main roles of the DnaA protein are to bind the origin of chromosome replication (oriC), to unwind DNA and to provide a hub for the step-wise assembly of a replisome. DnaA is composed of four domains, with each playing a distinct functional role in the orisome assembly. Out of the four domains, the role of domain I is the least understood and appears to be the most species-specific. To better characterise Helicobacter pylori DnaA domain I, we have constructed a series of DnaA variants and studied their interactions with H. pylori bipartite oriC. We show that domain I is responsible for the stabilisation and organisation of DnaA-oriC complexes and provides cooperativity in DnaA-DNA interactions. Domain I mediates cross-interactions between oriC subcomplexes, which indicates that domain I is important for long-distance DnaA interactions and is essential for orisosme assembly on bipartite origins. HobA, which interacts with domain I, increases the DnaA binding to bipartite oriC; however, it does not stimulate but rather inhibits DNA unwinding. This suggests that HobA helps DnaA to bind oriC, but an unknown factor triggers DNA unwinding. Together, our results indicate that domain I self-interaction is important for the DnaA assembly on bipartite H. pylori oriC.


Assuntos
Proteínas de Bactérias , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA , Helicobacter pylori , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/química , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Ligação Proteica , Origem de Replicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...