Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 308(1): 162-9, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17196605

RESUMO

A new regular polyampholyte, namely poly-(N,N-dially-N,N-dimethylammonium-alt-N-octyl-maleamic carboxylate), was synthesized by alternating free radical copolymerization. The influence of the added polymer on the range of the inverse micellar region (L(2) phase) of a SDS-based system was investigated. The phase behavior as well as conductivity measurements indicate that the polymer, which forms hydrophobic microdomains, is located more in the water core of the microemulsion droplets rather than at the interface of the surfactant film. The polyampholyte proved to be an efficient reducing and stabilizing agent for the formation of gold colloids. The process of nanoparticle formation was investigated in the absence of any other reducing agent, in water as well as in the microemulsion template phase. In both cases, nanoscalic gold particles can be synthesized, while the adsorption of the polymer on the particle surface prevents their aggregation due to electrosteric stabilization.

2.
J Colloid Interface Sci ; 302(2): 662-8, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16876815

RESUMO

The influence of branched poly(ethyleneimine) on the phase behavior of the system sodium dodecylsulfate/toluene-pentanol (1:1)/water has been studied. The isotropic microemulsions still exist when water is replaced with aqueous solutions of PEI (up to 30% in weight), but their stability is significantly influenced. From a polymer concentration of 20 wt%, the polymer enhances the solubilization of water in oil, changes the sign of the spontaneous curvature of the surfactant film, and induces an inversion of the microemulsion type from water-in-oil (L(2)) to oil-in-water (L(1)), by the formation of a bicontinuous channel. Further investigations show that the addition of polymer in the L(2) phase changes the droplet-droplet interactions as the conductivity drops and the percolation disappears. In the bicontinuous channel, higher viscosities can be detected, as well as a weak percolation followed by a steep increase of the conductivity, which can be related to evident structural changes in the system. DSC measurements allow then to follow the changes of the water properties in the system, from interfacial-water in the L(2) phase to free-water in the sponge-like phase. Finally, all the measurements performed permit to characterize the structural transitions in the system and to understand the role of the added polymer.


Assuntos
Polietilenoimina/química , Varredura Diferencial de Calorimetria , Condutividade Elétrica , Emulsões/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Transição de Fase , Sensibilidade e Especificidade , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...