Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 13(2): 623-642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34587523

RESUMO

BACKGROUND & AIMS: It is well established that chronic inflammation promotes gastric cancer-associated metaplasia, but little is known regarding the mechanisms by which immune cells and cytokines regulate metaplastic cellular changes. The goals of this study were to identify interleukin 13 (IL13)-producing immune cells, determine the gastric epithelial cell response(s) to IL13, and establish the role(s) of IL13 in metaplasia development. METHODS: Experiments used an established mouse model of autoimmune gastritis (TxA23), TxA23×Il4ra-/- mice, which develop gastritis but do not express the IL4/IL13-receptor subunit IL4Rα, and TxA23×Il13-Yfp mice, which express yellow fluorescent protein in IL13-producing cells. Flow cytometry was used to measure IL13 secretion and identify IL13-producing immune cells. Mouse and human gastric organoids were cultured with IL13 to determine epithelial cell response(s) to IL13. Single-cell RNA sequencing was performed on gastric epithelial cells from healthy and inflamed mouse stomachs. Mice with gastritis were administered IL13-neutralizing antibodies and stomachs were analyzed by histopathology and immunofluorescence. RESULTS: We identified 6 unique subsets of IL13-producing immune cells in the inflamed stomach. Organoid cultures showed that IL13 acts directly on gastric epithelium to induce a metaplastic phenotype. IL4Rα-deficient mice did not progress to metaplasia. Single-cell RNA sequencing determined that gastric epithelial cells from IL4Rα-deficient mice up-regulated inflammatory genes but failed to up-regulate metaplasia-associated transcripts. Neutralization of IL13 significantly reduced and reversed metaplasia development in mice with gastritis. CONCLUSIONS: IL13 is made by a variety of immune cell subsets during chronic gastritis and promotes gastric cancer-associated metaplastic epithelial cell changes. Neutralization of IL13 reduces metaplasia severity during chronic gastritis.


Assuntos
Gastrite , Interleucina-13 , Animais , Células Epiteliais/patologia , Mucosa Gástrica/patologia , Gastrite/patologia , Interleucina-13/metabolismo , Metaplasia/patologia , Camundongos
2.
Front Cell Dev Biol ; 9: 752346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900999

RESUMO

Gastric cancer is a leading cause of mortality worldwide. The risk of developing gastric adenocarcinoma, which comprises >90% of gastric cancers, is multifactorial, but most associated with Helicobacter pylori infection. Autoimmune gastritis is a chronic autoinflammatory syndrome where self-reactive immune cells are activated by gastric epithelial cell autoantigens. This cause of gastritis is more so associated with the development of neuroendocrine tumors. However, in both autoimmune and infection-induced gastritis, high risk metaplastic lesions develop within the gastric mucosa. This warrants concern for carcinogenesis in both inflammatory settings. There are many similarities and differences in disease progression between these two etiologies of chronic gastritis. Both diseases have an increased risk of gastric adenocarcinoma development, but each have their own unique comorbidities. Autoimmune gastritis is a primary cause of pernicious anemia, whereas chronic infection typically causes gastrointestinal ulceration. Both immune responses are driven by T cells, primarily CD4+ T cells of the IFN-γ producing, Th1 phenotype. Neutrophilic infiltrates help clear H. pylori infection, but neutrophils are not necessarily recruited in the autoimmune setting. There have also been hypotheses that infection with H. pylori initiates autoimmune gastritis, but the literature is far from definitive with evidence of infection-independent autoimmune gastric disease. Gastric cancer incidence is increasing among young women in the United States, a population at higher risk of developing autoimmune disease, and H. pylori infection rates are falling. Therefore, a better understanding of these two chronic inflammatory diseases is needed to identify their roles in initiating gastric cancer.

3.
Front Cell Dev Biol ; 9: 752350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712668

RESUMO

Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.

5.
Gastroenterology ; 159(6): 2116-2129.e4, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835664

RESUMO

BACKGROUND & AIMS: Chronic atrophic gastritis can lead to gastric metaplasia and increase risk of gastric adenocarcinoma. Metaplasia is a precancerous lesion associated with an increased risk for carcinogenesis, but the mechanism(s) by which inflammation induces metaplasia are poorly understood. We investigated transcriptional programs in mucous neck cells and chief cells as they progress to metaplasia mice with chronic gastritis. METHODS: We analyzed previously generated single-cell RNA-sequencing (scRNA-seq) data of gastric corpus epithelium to define transcriptomes of individual epithelial cells from healthy BALB/c mice (controls) and TxA23 mice, which have chronically inflamed stomachs with metaplasia. Chronic gastritis was induced in B6 mice by Helicobacter pylori infection. Gastric tissues from mice and human patients were analyzed by immunofluorescence to verify findings at the protein level. Pseudotime trajectory analysis of scRNA-seq data was used to predict differentiation of normal gastric epithelium to metaplastic epithelium in chronically inflamed stomachs. RESULTS: Analyses of gastric epithelial transcriptomes revealed that gastrokine 3 (Gkn3) mRNA is a specific marker of mouse gastric corpus metaplasia (spasmolytic polypeptide expressing metaplasia, SPEM). Gkn3 mRNA was undetectable in healthy gastric corpus; its expression in chronically inflamed stomachs (from TxA23 mice and mice with Helicobacter pylori infection) identified more metaplastic cells throughout the corpus than previously recognized. Staining of healthy and diseased human gastric tissue samples paralleled these results. Although mucous neck cells and chief cells from healthy stomachs each had distinct transcriptomes, in chronically inflamed stomachs, these cells had distinct transcription patterns that converged upon a pre-metaplastic pattern, which lacked the metaplasia-associated transcripts. Finally, pseudotime trajectory analysis confirmed the convergence of mucous neck cells and chief cells into a pre-metaplastic phenotype that ultimately progressed to metaplasia. CONCLUSIONS: In analyses of tissues from chronically inflamed stomachs of mice and humans, we expanded the definition of gastric metaplasia to include Gkn3 mRNA and GKN3-positive cells in the corpus, allowing a more accurate assessment of SPEM. Under conditions of chronic inflammation, chief cells and mucous neck cells are plastic and converge into a pre-metaplastic cell type that progresses to metaplasia.


Assuntos
Celulas Principais Gástricas/patologia , Gastrite Atrófica/imunologia , Infecções por Helicobacter/imunologia , Lesões Pré-Cancerosas/diagnóstico , Neoplasias Gástricas/prevenção & controle , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Carcinogênese/genética , Carcinogênese/imunologia , Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Celulas Principais Gástricas/imunologia , Modelos Animais de Doenças , Feminino , Gastrite Atrófica/microbiologia , Gastrite Atrófica/patologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Humanos , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Metaplasia/diagnóstico , Metaplasia/genética , Metaplasia/imunologia , Metaplasia/patologia , Camundongos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , RNA-Seq , Análise de Célula Única , Neoplasias Gástricas/patologia
6.
Cell Mol Gastroenterol Hepatol ; 10(3): 561-579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32376420

RESUMO

BACKGROUND & AIMS: The association between chronic inflammation and gastric carcinogenesis is well established, but it is not clear how immune cells and cytokines regulate this process. We investigated the role of interleukin 27 (IL27) in the development of gastric atrophy, hyperplasia, and metaplasia (preneoplastic lesions associated with inflammation-induced gastric cancer) in mice with autoimmune gastritis. METHODS: We performed studies with TxA23 mice (control mice), which express a T-cell receptor against the H+/K+ adenosine triphosphatase α chain and develop autoimmune gastritis, and TxA23xEbi3-/- mice, which develop gastritis but do not express IL27. In some experiments, mice were given high-dose tamoxifen to induce parietal cell atrophy and spasmolytic polypeptide-expressing metaplasia (SPEM). Recombinant IL27 was administered to mice with mini osmotic pumps. Stomachs were collected and analyzed by histopathology and immunofluorescence; we used flow cytometry to measure IL27 and identify immune cells that secrete IL27 in the gastric mucosa. Single-cell RNA sequencing was performed on immune cells that infiltrated stomach tissues. RESULTS: We identified IL27-secreting macrophages and dendritic cell in the corpus of mice with chronic gastritis (TxA23 mice). Mice deficient in IL27 developed more severe gastritis, atrophy, and SPEM than control mice. Administration of recombinant IL27 significantly reduced the severity of inflammation, atrophy, and SPEM in mice with gastritis. Single-cell RNA sequencing showed that IL27 acted almost exclusively on stomach-infiltrating CD4+ T cells to suppress expression of inflammatory genes. CONCLUSIONS: In studies of mice with autoimmune gastritis, we found that IL27 is an inhibitor of gastritis and SPEM, suppressing CD4+ T-cell-mediated inflammation in the gastric mucosa.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Mucosa Gástrica/patologia , Gastrite/tratamento farmacológico , Interleucinas/administração & dosagem , Lesões Pré-Cancerosas/prevenção & controle , Animais , Atrofia/imunologia , Atrofia/patologia , Atrofia/prevenção & controle , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Doença Crônica/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Gastrite/diagnóstico , Gastrite/imunologia , Gastrite/patologia , Humanos , Masculino , Metaplasia/imunologia , Metaplasia/patologia , Metaplasia/prevenção & controle , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , Receptores de Citocinas/genética , Proteínas Recombinantes/administração & dosagem , Índice de Gravidade de Doença
7.
Gut ; 69(6): 1027-1038, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31481545

RESUMO

OBJECTIVE: Spasmolytic polypeptide-expressing metaplasia (SPEM) is a regenerative lesion in the gastric mucosa and is a potential precursor to intestinal metaplasia/gastric adenocarcinoma in a chronic inflammatory setting. The goal of these studies was to define the transcriptional changes associated with SPEM at the individual cell level in response to acute drug injury and chronic inflammatory damage in the gastric mucosa. DESIGN: Epithelial cells were isolated from the gastric corpus of healthy stomachs and stomachs with drug-induced and inflammation-induced SPEM lesions. Single cell RNA sequencing (scRNA-seq) was performed on tissue samples from each of these settings. The transcriptomes of individual epithelial cells from healthy, acutely damaged and chronically inflamed stomachs were analysed and compared. RESULTS: scRNA-seq revealed a population Mucin 6 (Muc6)+gastric intrinsic factor (Gif)+ cells in healthy tissue, but these cells did not express transcripts associated with SPEM. Furthermore, analyses of SPEM cells from drug injured and chronically inflamed corpus yielded two major findings: (1) SPEM and neck cell hyperplasia/hypertrophy are nearly identical in the expression of SPEM-associated transcripts and (2) SPEM programmes induced by drug-mediated parietal cell ablation and chronic inflammation are nearly identical, although the induction of transcripts involved in immunomodulation was unique to SPEM cells in the chronic inflammatory setting. CONCLUSIONS: These data necessitate an expansion of the definition of SPEM to include Tff2+Muc6+ cells that do not express mature chief cell transcripts such as Gif. Our data demonstrate that SPEM arises by a highly conserved cellular programme independent of aetiology and develops immunoregulatory capabilities in a setting of chronic inflammation.


Assuntos
Mucosa Gástrica/metabolismo , Gastrite/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Feminino , Imunofluorescência , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Gastrite/metabolismo , Gastrite/patologia , Perfilação da Expressão Gênica , Hibridização In Situ , Masculino , Metaplasia/induzido quimicamente , Metaplasia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucina-6/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Tamoxifeno/farmacologia , Fator Trefoil-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...