Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283457

RESUMO

Invasive fungal infections, including Pneumocystis Pneumonia (PcP), remain frequent life-threatening conditions of patients with adaptive immune defects. While innate immunity helps control pathogen growth early during infection, it is typically not sufficient for complete protection against Pneumocystis and other human fungal pathogens. Alveolar macrophages (AM) possess pattern recognition molecules capable of recognizing antigenic and structural determinants of Pneumocystis. However, this pathogen effectively evades innate immunity to infect both immunocompetent and immunosuppressed hosts, albeit with differing outcomes. During our studies of mouse models of PcP, the FVB/N strain was identified as unique because of its ability to mount a protective innate immune response against Pneumocystis infection. In contrast to other immunocompetent strains, which become transiently infected prior to the onset of adaptive immunity, FVB/N mice rapidly eradicated Pneumocystis before an adaptive immune response was triggered. Furthermore, FVB/N mice remained highly resistant to infection even in the absence of functional T cells. The effector mechanism of innate protection required the action of functional alveolar macrophages, and the adoptive transfer of resistant FVB/N AMs, but not susceptible CB.17 AMs, conferred protection to immunodeficient mice. Macrophage IFNγ receptor signaling was not required for innate resistance, and FVB/N macrophages were found to display markers of alternative activation. IFNγ reprogrammed resistant FVB/N macrophages to a permissive M1 biased phenotype through a mechanism that required direct activation of the macrophage IFNγR. These results demonstrate that appropriately programmed macrophages provide protective innate immunity against this opportunistic fungal pathogen, and suggest that modulating macrophage function may represent a feasible therapeutic strategy to enhance antifungal host defense. The identification of resistant and susceptible macrophages provides a novel platform to study not only the mechanisms of macrophage-mediated antifungal defense, but also the mechanisms by which Pneumocystis evades innate immunity.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Macrófagos Alveolares/imunologia , Infecções por Pneumocystis/imunologia , Animais , Humanos , Imunocompetência , Hospedeiro Imunocomprometido , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Infecções por Pneumocystis/microbiologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
PeerJ ; 4: e2635, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812430

RESUMO

BACKGROUND: This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB) DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP)-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG), while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight). The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary) for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. METHODS: Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance) in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS). RESULTS: Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt) of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with 9:1 DEPN-8:PG-1 or 5:3:2 DPPC:POPC:POPG had the greatest in vivo activity in improving arterial oxygenation and dynamic lung compliance in ventilated animals with ARDS. Saline dispersions of these dual-peptide synthetic surfactants were also found to have shear viscosities comparable to or below those of current animal-derived surfactant drugs, supporting their potential ease of deliverability by instillation in future clinical applications. DISCUSSION: Our findings support the potential of dual-peptide synthetic lipid/peptide surfactants containing S-MB DATK + SP-Css ion-lock 1 for treating diseases of surfactant deficiency or dysfunction. Moreover, phospholipase-resistant dual-peptide surfactants containing DEPN-8/PG-1 may have particular applications in treating direct forms of ARDS where endogenous phospholipases are present in the lungs.

4.
PeerJ ; 4: e1528, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26793419

RESUMO

Background/objectives. This study examines the surface activity, resistance to biophysical inhibition, and pulmonary efficacy of a synthetic lung surfactant containing glycerophospholipids combined with Super Mini-B (S-MB) DATK, a novel and stable molecular mimic of lung surfactant protein (SP)-B. The objective of the work is to test whether S-MB DATK synthetic surfactant has favorable biophysical and physiological activity for future use in treating surfactant deficiency or dysfunction in lung disease or injury. Methods. The structure of S-MB DATK peptide was analyzed by homology modeling and by FTIR spectroscopy. The in vitro surface activity and inhibition resistance of synthetic S-MB DATK surfactant was assessed in the presence and absence of albumin, lysophosphatidylcholine (lyso-PC), and free fatty acids (palmitoleic and oleic acid). Adsorption and dynamic surface tension lowering were measured with a stirred subphase dish apparatus and a pulsating bubble surfactometer (20 cycles/min, 50% area compression, 37 °C). In vivo pulmonary activity of S-MB DATK surfactant was measured in ventilated rabbits with surfactant deficiency/dysfunction induced by repeated lung lavages that resulted in arterial PO2 values <100 mmHg. Results. S-MB DATK surfactant had very high surface activity in all assessments. The preparation adsorbed rapidly to surface pressures of 46-48 mN/m at 37 °C (low equilibrium surface tensions of 22-24 mN/m), and reduced surface tension to <1 mN/m under dynamic compression on the pulsating bubble surfactometer. S-MB DATK surfactant showed a significant ability to resist inhibition by serum albumin, C16:0 lyso-PC, and free fatty acids, but surfactant inhibition was mitigated by increasing surfactant concentration. S-MB DATK synthetic surfactant quickly improved arterial oxygenation and lung compliance after intratracheal instillation to ventilated rabbits with severe surfactant deficiency. Conclusions. S-MB DATK is an active mimic of native SP-B. Synthetic surfactants containing S-MB DATK (or related peptides) combined with lipids appear to have significant future potential for treating clinical states of surfactant deficiency or dysfunction, such as neonatal and acute respiratory distress syndromes.

5.
PeerJ ; 2: e485, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25083348

RESUMO

Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as 'helical adjuvants' to maintain activity by overriding the ß-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges ("ion-locks") promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu(-)-Lys(+) into the parent SP-C's. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts ß-sheet propensities based on the energies of the various ß-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel ß-sheet aggregates, with FTIR spectroscopy confirming high parallel ß-sheet with 'amyloid-like' properties. The enhanced ß-sheet properties for SP-Css and SP-Cff are likely responsible for their low surfactant activities in the in vitro and in vivo assays. Although standard (12)C-FTIR study showed that the α-helicity of these SP-C sequences in lipids was uniformly increased with Glu(-)-Lys(+) insertions, elevated surfactant activity was only selectively observed. Additional results from oriented and H/D exchange FTIR experiments indicated that the high surfactant activities depend on the SP-C ion-locks recapitulating both the α-helicity and the membrane topography of native SP-C. SP-Css ion-lock 1, an SP-Css with a salt-bridge for a Glu(-)-Lys(+) ion-pair predicted from MPEx hydropathy calculations, demonstrated enhanced surfactant activity and a transmembrane helix simulating those of native SP-C. Conclusion. Highly active SP-C mimics were developed that replace the palmitoyls of SP-C with intrapeptide salt-bridges and represent a new class of synthetic surfactants with therapeutic interest.

6.
Surgery ; 153(1): 25-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22853859

RESUMO

OBJECTIVE: Surfactant dysfunction is an important pathologic disturbance in various forms of acute inflammatory lung injury. Previously we reported the presence of marked alterations in the composition and activity of pulmonary surfactant in bilateral lung contusions (LC) injury induced by blunt trauma in rats. This is extended here to a mouse model of unilateral LC with a focus on compositional and functional changes in surfactant associated with permeability injury and increases in activity of secretory phospholipase A2. RESULTS: Surfactant-associated gene expression was not altered in mice with unilateral LC injury on the basis of Affymetrix analysis. LC mice had significant permeability injury with increased albumin and total protein in bronchoalveolar lavage at 5, 24, 48, and 72 hours after insult compared with uninjured controls. The percent content of large surfactant aggregates was depleted at all postinjury times, and pulmonary pressure-volume (P-V) mechanics and compliance were abnormal during this period. Surfactant dysfunction was evaluated in 24 hours, when permeability injury and P-V changes were most prominent. At this time, activity levels of secretory phospholipase A2 were increased in bronchoalveolar lavage, and chromatographic analysis showed that large surfactant aggregates had decreased levels of phosphatidylcholine and increased levels of lyso-phosphatidylcholine. These changes were accompanied by severe detriments in large aggregate surface activity by pulsating bubble surfactometry. Large aggregates from LC mice at 24 hours had minimum surface tensions of only 12.6 ± 1.1 mN/m after prolonged bubble pulsation (20 min) compared with 0.7 ± 0.03 mN/m for uninjured controls. CONCLUSION: These results document important detriments in the composition and activity of pulmonary surfactant in LC injury in mice and suggest that active synthetic phospholipase-resistant exogenous surfactants may have utility in treating surfactant dysfunction in this clinically important condition.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Líquido da Lavagem Broncoalveolar/química , Contusões/metabolismo , Lisofosfatidilcolinas/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Albuminas/metabolismo , Animais , Biomarcadores/metabolismo , Contusões/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Testes de Função Respiratória
7.
Eur Biophys J ; 41(9): 755-67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22903196

RESUMO

The hydrophobic lung surfactant protein, SP-B, is essential for survival. Cycling of lung volume during respiration requires a surface-active lipid-protein layer at the alveolar air-water interface. SP-B may contribute to surfactant layer maintenance and renewal by facilitating contact and transfer between the surface layer and bilayer reservoirs of surfactant material. However, only small effects of SP-B on phospholipid orientational order in model systems have been reported. In this study, N-terminal (SP-B(8-25)) and C-terminal (SP-B(63-78)) helices of SP-B, either linked as Mini-B or unlinked but present in equal amounts, were incorporated into either model phospholipid mixtures or into bovine lipid extract surfactant in the form of vesicle dispersions or mechanically oriented bilayer samples. Deuterium and phosphorus nuclear magnetic resonance (NMR) were used to characterize effects of these peptides on phospholipid chain orientational order, headgroup orientation, and the response of lipid-peptide mixtures to mechanical orientation by mica plates. Only small effects on chain orientational order or headgroup orientation, in either vesicle or mechanically oriented samples, were seen. In mechanically constrained samples, however, Mini-B and its component helices did have specific effects on the propensity of lipid-peptide mixtures to form unoriented bilayer populations which do not exchange with the oriented fraction on the timescale of the NMR experiment. Modification of local bilayer orientation, even in the presence of mechanical constraint, may be relevant to the transfer of material from bilayer reservoirs to a flat surface-active layer, a process that likely requires contact facilitated by the formation of highly curved protrusions.


Assuntos
Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Proteína B Associada a Surfactante Pulmonar/química , Humanos , Espectroscopia de Ressonância Magnética
8.
Respir Care ; 56(9): 1369-86; discussion 1386-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21944686

RESUMO

Since the identification of surfactant deficiency as the putative cause of the infant respiratory distress syndrome (RDS) by Avery and Mead in 1959, our understanding of the role of pulmonary surfactant in respiratory physiology and the pathophysiology of acute lung injury (ALI) has advanced substantially. Surfactant replacement has become routine for the prevention and treatment of infant RDS and other causes of neonatal lung injury. The role of surfactant in lung injury beyond the neonatal period, however, has proven more complex. Relative surfactant deficiency, dysfunction, and inhibition all contribute to the disturbed physiology seen in ALI and acute respiratory distress syndrome (ARDS). Consequently, exogenous surfactant, while a plausible therapy, has proven to be less effective in ALI/ARDS than in RDS, where simple deficiency is causative. This failure may relate to a number of factors, among them inadequacy of pharmaceutical surfactants, insufficient dosing or drug delivery, poor drug distribution, or simply an inability of the drug to substantially impact the underlying pathophysiology of ALI/ARDS. Both animal and human studies suggest that direct types of ALI (eg, aspiration, pneumonia) may be more responsive to surfactant therapy than indirect lung injury (eg, sepsis, pancreatitis). Animal studies are needed, however, to further clarify aspects of drug composition, timing, delivery, and dosing before additional human trials are pursued, as the results of human trials to date have been inconsistent and largely disappointing. Further study and perhaps the development of more robust pharmaceutical surfactants offer promise that exogenous surfactant will find a place in our armamentarium of treatment of ALI/ARDS in the future.


Assuntos
Lesão Pulmonar Aguda/terapia , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/análise , Animais , Oxigenação por Membrana Extracorpórea , Humanos , Recém-Nascido , Surfactantes Pulmonares/administração & dosagem , Surfactantes Pulmonares/química , Surfactantes Pulmonares/classificação , Síndrome do Desconforto Respiratório/terapia
9.
Medchemcomm ; 2(12): 1167-1173, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22530092

RESUMO

This paper reports the chemical synthesis and purification of a novel phospholipase-resistant C16:0, C16:1 diether phosphonoglycerol with structural analogy to ester-linked anionic phosphatidylglycerol (PG) in endogenous pulmonary surfactant. This diether phosphonoglycerol (PG 1) is studied for phospholipase A(2) (PLA(2)) resistance and for surface activity in synthetic exogenous surfactants combined with Super Mini-B (S-MB) peptide and DEPN-8, a previously-reported diether phosphonolipid analog of dipalmitoyl phosphatidylcholine (DPPC, the major zwitterionic phospholipid in native lung surfactant). Activity experiments measured both adsorption and dynamic surface tension lowering due to the known importance of these surface behaviors in lung surfactant function in vivo. Synthetic surfactants containing 9 : 1 DEPN-8:PG 1 + 3% S-MB were resistant to degradation by PLA(2) in chromatographic studies, while calf lung surfactant extract (CLSE, the substance of the bovine clinical surfactant Infasurf®) was significantly degraded by PLA(2). The 9 : 1 DEPN-8:PG 1 + 3% S-MB mixture also had small but consistent increases in both adsorption and dynamic surface tension lowering ability compared to DEPN-8 + 3% S-MB. Consistent with these surface activity increases, molecular dynamics simulations using Protein Modeller, GROMACS force-field, and PyMOL showed that bilayers containing DPPC and palmitoyl-oleoyl-PC (POPC) as surrogates of DEPN-8 and PG 1 were penetrated to a greater extent by S-MB peptide than bilayers of DPPC alone. These results suggest that PG 1 or related anionic phosphono-PG analogs may have functional utility in phospholipase-resistant synthetic surfactants targeting forms of acute pulmonary injury where endogenous surfactant becomes dysfunctional due to phospholipase activity in the innate inflammatory response.

10.
Biophys J ; 101(12): 2957-65, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22208194

RESUMO

We investigated the effects of KL4, a 21-residue amphipathic peptide approximating the overall ratio of positively charged to hydrophobic amino acids in surfactant protein B (SP-B), on the structure and collapse of dipalmitoylphosphatidylcholine and palmitoyl-oleoyl-phosphatidylglycerol monolayers. As reported in prior work on model lung surfactant phospholipid films containing SP-B and SP-B peptides, our experiments show that KL4 improves surfactant film reversibility during repetitive interfacial cycling in association with the formation of reversible collapse structures on multiple length scales. Emphasis is on exploring a general mechanistic connection between peptide-induced nano- and microscale reversible collapse structures (silos and folds).


Assuntos
Pulmão/química , Modelos Químicos , Modelos Moleculares , Peptídeos/química , Proteína B Associada a Surfactante Pulmonar/química , Proteína B Associada a Surfactante Pulmonar/ultraestrutura , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Desnaturação Proteica , Propriedades de Superfície
11.
PLoS One ; 5(1): e8672, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20084172

RESUMO

BACKGROUND: Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. METHODOLOGY/RESULTS: FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a "saposin-like" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. CONCLUSION: Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.


Assuntos
Proteína B Associada a Surfactante Pulmonar/fisiologia , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Conformação Proteica , Proteína B Associada a Surfactante Pulmonar/química , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
12.
J Trauma ; 67(6): 1182-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20009665

RESUMO

BACKGROUND: This study uses statistical predictive modeling and hierarchical cluster analyses to examine inflammatory mediators and cells in bronchoalveolar lavage (BAL) as putative biomarkers in rats with blunt trauma lung contusion (LC), gastric aspiration (combined acid and small gastric food particles, CASP), or a combination of the two. METHODS: Specific parameters assessed in the innate pulmonary inflammatory response were leukocytes, macrophages, and polymorphonuclear neutrophils (PMNs) in BAL; whole lung myeloperoxidase activity; and a series of cytokines or chemokines present in BAL at 5 or 24 hours after injury: tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, interferon-gamma, IL-10, macrophage inflammatory protein-2, cytokine-induced neutrophil chemoattractant-1, and monocyte chemoattractant protein-1. RESULTS: Rats with LC, CASP, LC + CASP all had severe lung injury compared with uninjured controls based on decreased arterial oxygenation or increased BAL albumin at 5 or 24 hours postinsult. However, the injury groups had distinct overall patterns of inflammation that allowed them to be discriminated accurately by hierarchical cluster analysis (29 of 30 and 35 of 37 rats were correctly classified in hierarchical clusters at 5 and 24 hours, respectively). Moreover, predictive analyses based on an extension of standard receiver-operator characteristic methodology discriminated individual animals and groups with similar high accuracy based on a maximum of two inflammatory parameters per group (29 of 30 and 36 of 37 rats were correctly classified at 5 hours and 24 hours, respectively). CONCLUSIONS: These results support the possibility that inflammatory biomarker profiles could be developed in the future to improve the diagnosis and management of trauma patients with unwitnessed (occult) gastric aspiration who have an increased risk of clinical acute lung injury or the acute respiratory distress syndrome.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Refluxo Laringofaríngeo/metabolismo , Lesão Pulmonar/metabolismo , Animais , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Análise por Conglomerados , Contusões/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Mediadores da Inflamação/metabolismo , Escala de Gravidade do Ferimento , Modelos Estatísticos , Peroxidase/metabolismo , Valor Preditivo dos Testes , Curva ROC , Distribuição Aleatória , Ratos
13.
Am J Physiol Lung Cell Mol Physiol ; 297(4): L641-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19617311

RESUMO

Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired oxygen fraction between postnatal days 1 and 4. Here, we investigate whether oxygen-induced changes in lung function are attributable to defects in surfactant composition and activity, structural changes in alveolar development, or both. Newborn mice were exposed to room air or 40%, 60%, 80%, or 100% oxygen between postnatal days 1 and 4 and allowed to recover in room air until 8 wk of age. Lung compliance and alveolar size increased, and airway resistance, airway elastance, tissue elastance, and tissue damping decreased, in mice exposed to 60-80% oxygen; changes were even greater in mice exposed to 100% oxygen. These alterations in lung function were not associated with changes in total protein content or surfactant phospholipid composition in bronchoalveolar lavage. Moreover, surface activity and total and hydrophobic protein content were unchanged in large surfactant aggregates centrifuged from bronchoalveolar lavage compared with control. Instead, the number of type II cells progressively declined in 60-100% oxygen, whereas levels of T1alpha, a protein expressed by type I cells, were comparably increased in mice exposed to 40-100% oxygen. Thickened bundles of elastin fibers were also detected in alveolar walls of mice exposed to > or = 60% oxygen. These findings support the hypothesis that changes in lung development, rather than surfactant activity, are the primary causes of oxygen-altered lung function in children who were exposed to oxygen as neonates. Furthermore, the disruptive effects of oxygen on epithelial development and lung mechanics are not equivalently dose dependent.


Assuntos
Lesão Pulmonar/etiologia , Oxigênio/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Elastina/metabolismo , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/citologia , Testes de Função Respiratória , Mecânica Respiratória
14.
J Surg Res ; 155(2): 273-82, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19515386

RESUMO

INTRODUCTION: Lung contusion (LC) from blunt thoracic trauma is a clinically-prevalent condition that can progress to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Patients with LC are at risk for gastric aspiration at the time of trauma, but the combined insults have not been well-studied in animal models. This study tests the hypothesis that concurrent gastric aspiration (combined acid and small gastric particles, CASP) at the time of trauma significantly increases permeability injury and inflammation compared with LC alone, and also modifies the inflammatory response to include distinct features compared with the aspiration component of injury. MATERIALS AND METHODS: Four groups of adult male Long-Evans rats were studied (LC, CASP, LC+CASP, uninjured controls). LC was induced in anesthetized rats at a fixed impact energy of 2.0 J, and CASP (1.2 mL/kg body weight, 40 mg particles/mL, pH=1.25) was instilled through an endotracheal tube. Lung injury and inflammation were assessed by arterial blood gases and levels of albumin, cells, and cytokines/chemokines in bronchoalveolar lavage (BAL) at 5 and 24 h. RESULTS: Rats with LC+CASP had lower mean PaO(2)/FiO(2) ratios compared with LC alone at 24 h, and higher BAL albumin concentrations compared with either LC or CASP alone. Rats with LC+CASP versus LC had more severe inflammation based on higher levels of PMN in BAL at 5 h, increased whole lung myeloperoxidase (MPO) activity at 5 and 24 h, and increased levels of inflammatory mediators in BAL (TNFalpha, IL-1beta, and MCP-1 at 5 and 24 h; IL-10, MIP-2, and CINC-1 at 5 h). Rats with LC+CASP also had distinct aspects of inflammation compared with CASP alone, i.e., significantly higher levels of IL-10 (5 and 24 h), IL-1beta (24 h), CINC-1 (24 h), and MCP-1 (24 h), and significantly lower levels of MPO (5 h), MIP-2 (5 h), and CINC-1 (5 h). CONCLUSIONS: Concurrent gastric aspiration can exacerbate permeability lung injury and inflammation associated with LC, and also generates a modified inflammatory response compared with aspiration alone. Unwitnessed gastric aspiration has the potential to contribute to more severe forms of LC injury associated with progression to ALI/ARDS and pneumonia in patients with thoracic trauma.


Assuntos
Lesão Pulmonar Aguda/complicações , Permeabilidade da Membrana Celular , Contusões/complicações , Pneumonia/etiologia , Aspiração Respiratória/complicações , Índice de Gravidade de Doença , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Albuminas/análise , Animais , Líquido da Lavagem Broncoalveolar/química , Contagem de Células , Contusões/metabolismo , Contusões/patologia , Citocinas/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Modelos Animais , Oxigênio/sangue , Peroxidase/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Ratos , Ratos Long-Evans , Mecânica Respiratória/fisiologia
15.
Microb Pathog ; 46(4): 185-93, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19272305

RESUMO

This study uses microarray analyses to examine gene expression profiles for Mycobacterium tuberculosis (Mtb) induced by exposure in vitro to bovine lung surfactant preparations that vary in apoprotein content: (i) whole lung surfactant (WLS) containing the complete mixture of endogenous lipids and surfactant proteins (SP)-A, -B, -C, and -D; (ii) extracted lung surfactant (CLSE) containing lipids plus SP-B and -C; (iii) column-purified surfactant lipids (PPL) containing no apoproteins, and (iv) purified human SP-A. Exposure to WLS evoked a multitude of transcriptional responses in Mtb, with 52 genes up-regulated and 23 genes down-regulated at 30min exposure, plus 146 genes up-regulated and 27 genes down-regulated at 2h. Notably, WLS rapidly induced several membrane-associated lipases that presumptively act on surfactant lipids as substrates, and a large number of genes involved in the synthesis of phthiocerol dimycocerosate (PDIM), a cell wall component known to be important in macrophage interactions and Mtb virulence. Exposure of Mtb to CLSE, PPL, or purified SP-A caused a substantially weaker transcriptional response (

Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Surfactantes Pulmonares/metabolismo , Estresse Fisiológico , Animais , Bovinos , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
16.
Shock ; 32(2): 122-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19174738

RESUMO

This article reviews current animal models and laboratory studies investigating the pathophysiology of lung contusion (LC), a common and severe condition in patients with blunt thoracic trauma. Emphasis is on studies elucidating cells, mediators, receptors, and processes important in the innate pulmonary inflammatory response that contribute to LC injury. Surfactant dysfunction in the pathogenesis of LC is also discussed, as is the potential role of epithelial cell or neutrophil apoptosis. Studies examining combination injuries where LC is exacerbated by secondary insults such as gastric aspiration in trauma patients are also noted. The need for continuing mechanism-based research to further clarify the pathophysiology of LC injury, and to define and test potential therapeutic interventions targeting specific aspects of inflammation or surfactant dysfunction to improve clinical outcomes in patients with LC, is also emphasized.


Assuntos
Contusões/metabolismo , Lesão Pulmonar/metabolismo , Pneumonia/metabolismo , Animais , Apoptose , Contusões/patologia , Contusões/fisiopatologia , Contusões/terapia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Inflamação/terapia , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Pneumonia/patologia , Pneumonia/fisiopatologia , Pneumonia/terapia , Surfactantes Pulmonares/metabolismo , Aspiração Respiratória/metabolismo , Aspiração Respiratória/patologia , Aspiração Respiratória/fisiopatologia , Aspiração Respiratória/terapia
17.
Curr Med Chem ; 15(19): 1911-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18691048

RESUMO

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, and there is a significant need for more effective medicinal chemical agents for use in these severe and lethal lung injury syndromes. To facilitate future chemical-based drug discovery research on new agent development, this paper reviews present pharmacotherapy for ALI/ARDS in the context of biological and biochemical drug activities. The complex lung injury pathophysiology of ALI/ARDS offers an array of possible targets for drug therapy, including inflammation, cell and tissue injury, vascular dysfunction, surfactant dysfunction, and oxidant injury. Added targets for pharmacotherapy outside the lungs may also be present, since multiorgan or systemic pathology is common in ALI/ARDS. The biological and physiological complexity of ALI/ARDS requires the consideration of combined-agent treatments in addition to single-agent therapies. A number of pharmacologic agents have been studied individually in ALI/ARDS, with limited or minimal success in improving survival. However, many of these agents have complementary biological/biochemical activities with the potential for synergy or additivity in combination therapy as discussed in this article.


Assuntos
Anti-Inflamatórios/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Vasodilatadores/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Desenho de Fármacos , Humanos , Síndrome do Desconforto Respiratório/fisiopatologia , Vasodilatadores/efeitos adversos
18.
Pediatr Clin North Am ; 55(3): 545-75, ix, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18501754

RESUMO

This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.


Assuntos
Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Tensoativos/uso terapêutico , Humanos , Incidência , Recém-Nascido , Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/epidemiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Taxa de Sobrevida , Resultado do Tratamento , Estados Unidos/epidemiologia
19.
Shock ; 30(5): 508-17, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18323743

RESUMO

This study investigates surfactant dysfunction in rats with lung contusion (LC) induced by blunt chest trauma. Rats at 24 h postcontusion had a decreased percent content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL) and altered large-aggregate composition with decreased phosphatidylcholine (PC), increased lyso-PC, and increased protein compared with uninjured controls. The surface activity of large aggregates on a pulsating bubble surfactometer was also severely impaired at 24 h postcontusion. Decreases in large surfactant aggregate content and surface activity were improved, but still apparent, at 48 and 72 h postcontusion compared with uninjured control rats and returned to normal by 96 h postcontusion. The functional importance of surfactant abnormalities in LC injury was documented in pilot studies showing that exogenous surfactant replacement at 24 h postcontusion improved inflation/deflation lung volumes. Additional experiments investigated a clinically relevant combination of LC plus gastric aspiration (combined acid and small gastric food particles) and found reductions in large surfactant aggregates in BAL similar to those for LC. However, rats given LC + combined acid and small gastric food particles versus LC had more severe surfactant dysfunction based on decreases in surface activity and alterations in large aggregate composition. Combined data for all animal groups had strong statistical correlations between surfactant dysfunction (increased minimum surface tension, decreased large aggregates in BAL, decreased aggregate PC, and increased aggregate lyso-PC) and the severity of inflammatory lung injury (increased total protein, albumin, protein/phospholipid ratio, neutrophils, and erythrocytes in BAL plus increased whole lung myeloperoxidase activity). These results show that surfactant dysfunction is important in the pathophysiology of LC with or without concurrent gastric aspiration and provides a rationale for surfactant replacement therapy in these prevalent clinical conditions.


Assuntos
Contusões/metabolismo , Pneumonia Aspirativa/metabolismo , Surfactantes Pulmonares/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Contusões/etiologia , Contusões/fisiopatologia , Lesão Pulmonar/fisiopatologia , Masculino , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Pneumonia Aspirativa/imunologia , Ratos , Ratos Long-Evans , Tensão Superficial
20.
Tuberculosis (Edinb) ; 88(3): 178-86, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18155644

RESUMO

The transmission of Mycobacterium tuberculosis (TB) requires extensive damage to the lungs to facilitate bacterial release into the airways, and it is therefore likely that the microorganism has evolved mechanisms to exacerbate its local pathology. This study examines the inhibitory effects of lipids extracted and purified chromatographically from TB on the surface-active function of lavaged bovine lung surfactant (LS) and a clinically relevant calf lung surfactant extract (CLSE). Total lipids from TB greatly inhibited the surface activity of LS and CLSE on the pulsating bubble surfactometer at physical conditions applicable for respiration in vivo (37 degrees C, 20 cycles/min, 50% area compression). Minimum surface tensions for LS (0.5 mg/ml) and CLSE (1 mg/ml) were raised from <1 mN/m to 15.7+/-1.2 and 18.7+/-1.3 mN/m after 5 min of bubble pulsation in the presence of total TB lipids (0.15 mg/ml). TB mixed waxes (0.15 mg/ml) and TB trehalose monomycolates (TMMs, 0.15 mg/ml) also significantly inhibited the surface activity of LS and CLSE (minimum surface tensions of 10-16 mN/m after 5 min of bubble pulsation), as did purified trehalose 6,6'-dimycolate (TDM, cord factor). Phosphatidylinositol mannosides (PIMs, 0.15 mg/ml) from TB had no inhibitory effect on the surface activity of LS or CLSE. Concentration dependence studies showed that LS was also inhibited significantly by total TB lipids at 0.075 mg/ml, with a smaller activity decrease apparent even at 0.00375 mg/ml. These findings document that TB contains multiple lipids that can directly impair the biophysical function of endogenous and exogenous lung surfactants. Direct inhibition by TB lipids could worsen surfactant dysfunction caused by plasma proteins or other endogenous substances induced by inflammatory injury in the infected lungs. TB lipids could also inhibit the effectiveness of exogenous surfactants used to treat severe acute respiratory failure in TB patients meeting criteria for clinical acute lung injury (ALI) or the acute respiratory distress syndrome (ARDS).


Assuntos
Lipídeos/farmacologia , Mycobacterium tuberculosis/química , Surfactantes Pulmonares/antagonistas & inibidores , Animais , Bovinos , Parede Celular/química , Relação Dose-Resposta a Droga , Lipídeos/isolamento & purificação , Surfactantes Pulmonares/farmacologia , Tensão Superficial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...