Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38557842

RESUMO

We present a new library designed to provide a simple and straightforward way to implement QM/AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) and other polarizable QM/MM (Molecular Mechanics) methods based on induced point dipoles. The library, herein referred to as OpenMMPol, is free and open-sourced and is engineered to address the increasing demand for accurate and efficient QM/MM simulations. OpenMMPol is specifically designed to allow polarizable QM/MM calculations of ground state energies and gradients and excitation properties. Key features of OpenMMPol include a modular architecture facilitating extensibility, parallel computing capabilities for enhanced performance on modern cluster architectures, a user-friendly interface for intuitive implementation, and a simple and flexible structure for providing input data. To show the capabilities offered by the library, we present an interface with PySCF to perform QM/AMOEBA molecular dynamics, geometry optimization, and excited-state calculation based on (time-dependent) density functional theory.

2.
J Chem Phys ; 158(10): 104105, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922147

RESUMO

The Linearized Poisson-Boltzmann (LPB) equation is a popular and widely accepted model for accounting solvent effects in computational (bio-) chemistry. In the present article, we derive the analytical forces using the domain-decomposition-based LPB-method with a van-der Waals or solvent-accessible surface. We present an efficient strategy to compute the forces and its implementation, allowing linear scaling of the method with respect to the number of atoms using the fast multipole method. Numerical tests illustrate the accuracy of the computation of the analytical forces and compare the efficiency with other available methods.

3.
J Phys Chem B ; 126(43): 8827-8837, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265187

RESUMO

The domain decomposition conductor-like screening model is an efficient way to compute the solvation energy of solutes within a polarizable continuum medium in a linear scaling computational time. Despite its efficiency, the application to very large systems is still challenging. A possibility to further accelerate the algorithm is resorting to coarse-graining strategies. In this paper we present a preliminary interface between the molecular dynamics package Tinker and the ddX library. The interface was used to test a united atom coarse-graining strategy that allowed us to push ddCOSMO to its limits by computing solvation energies on systems with up to 7 million atoms. We first present benchmarks to find an optimal discretization, and then, we discuss the performance and results obtained with fine- and coarse-grained solvation energy calculations.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Soluções
4.
J Chem Theory Comput ; 18(4): 2479-2493, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35257572

RESUMO

Multiscale methods combining quantum mechanics and molecular mechanics (QM/MM) have become the most suitable and effective strategies for the investigation of the spectroscopic properties of medium-to-large size chromophores in condensed phases. In this context, we are developing a novel workflow aimed at improving the generality, reliability, and ease of use of the available computational tools. In this paper, we report our latest developments with specific reference to a general protocol based on atomistic simulations, carried out under nonperiodic boundary conditions (NPBC). In particular, we add to our in house MD engine a new efficient treatment of mean field electrostatic contributions to energy and forces, together with the capability of performing the simulations either in the canonical (NVT) or in the isothermal-isobaric (NPT) ensemble. Next, we provide convincing evidence that the NBPC approach enhanced by specific tweaks for rigid body propagation, allows for the simulation of solute-solvent systems with a minimum number of degrees of freedom and large integration time step. After its validation, this new approach is applied to the challenging case of solvatochromic effects on the electron paramagnetic resonance (EPR) spectrum of a prototypical nitroxide radical. To this end, we propose and validate also an automated protocol to extract and weight simulation snapshots, making use of a continuous description of the strength of solute-solvent hydrogen bridges. While further developments are being worked on, the effectiveness of our approach, even in its present form, is demonstrated by the accuracy of the results obtained through an unsupervised approach characterized by a strongly reduced computational cost as compared to that of conventional QM/MM models, without any appreciable deterioration of accuracy.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Óxidos de Nitrogênio , Reprodutibilidade dos Testes , Solventes , Eletricidade Estática
5.
Chem Sci ; 12(40): 13331-13342, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777752

RESUMO

Photoreceptor proteins bind a chromophore, which, upon light absorption, modifies its geometry or its interactions with the protein, finally inducing the structural change needed to switch the protein from an inactive to an active or signaling state. In the Blue Light-Using Flavin (BLUF) family of photoreceptors, the chromophore is a flavin and the changes have been connected with a rearrangement of the hydrogen bond network around it on the basis of spectroscopic changes measured for the dark-to-light conversion. However, the exact conformational change triggered by the photoexcitation is still elusive mainly because a clear consensus on the identity not only of the light activated state but also of the dark one has not been achieved. Here, we present an integrated investigation that combines microsecond MD simulations starting from the two conflicting crystal structures available for the AppA BLUF domain with calculations of NMR, IR and UV-Vis spectra using a polarizable QM/MM approach. Thanks to such a combined analysis of the three different spectroscopic responses, a robust characterization of the structure of the dark state in solution is given together with the uncovering of important flaws of the most popular molecular mechanisms present in the literature for the dark-to-light activation.

6.
J Phys Chem B ; 125(36): 10282-10292, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34476939

RESUMO

Ultrafast transient infrared (TRIR) spectroscopy is widely used to measure the excitation-induced structural changes of protein-bound chromophores. Here, we design a novel and general strategy to compute TRIR spectra of photoreceptors by combining µs-long MM molecular dynamics with ps-long QM/AMOEBA Born-Oppenheimer molecular dynamics (BOMD) trajectories for both ground and excited electronic states. As a proof of concept, the strategy is here applied to AppA, a blue-light-utilizing flavin (BLUF) protein, found in bacteria. We first analyzed the short-time evolution of the embedded flavin upon excitation revealing that its dynamic Stokes shift is ultrafast and mainly driven by the internal reorganization of the chromophore. A different normal-mode representation was needed to describe ground- and excited-state IR spectra. In this way, we could assign all of the bands observed in the measured transient spectrum. In particular, we could characterize the flavin isoalloxazine-ring region of the spectrum, for which a full and clear description was missing.


Assuntos
Flavina-Adenina Dinucleotídeo , Flavoproteínas , Proteínas de Bactérias , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/metabolismo , Estrutura Terciária de Proteína , Espectrofotometria Infravermelho
7.
J Chem Theory Comput ; 17(9): 5661-5672, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34476941

RESUMO

We present the implementation of a fully coupled polarizable QM/MM/continuum model based on the AMOEBA polarizable force field and the domain decomposition implementation of the conductor-like screening model. Energies, response properties, and analytical gradients with respect to both QM and MM nuclear positions are available, and a generic, atomistic cavity can be employed. The model is linear scaling in memory requirements and computational cost with respect to the number of classical atoms and is therefore suited to model large, complex systems. Using three variants of the green-fluorescent protein, we investigate the overall computational cost of such calculations and the effect of the continuum model on the convergence of the computed properties with respect to the size of the embedding. We also demonstrate the fundamental role of polarization effects by comparing polarizable and nonpolarizable embeddings to fully QM ones.

8.
J Chem Phys ; 154(18): 184107, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241028

RESUMO

We present an extension of the polarizable quantum mechanical (QM)/AMOEBA approach to enhanced sampling techniques. This is achieved by connecting the enhanced sampling PLUMED library to the machinery based on the interface of Gaussian and Tinker to perform QM/AMOEBA molecular dynamics. As an application, we study the excited state intramolecular proton transfer of 3-hydroxyflavone in two solvents: methanol and methylcyclohexane. By using a combination of molecular dynamics and umbrella sampling, we find an ultrafast component of the transfer, which is common to the two solvents, and a much slower component, which is active in the protic solvent only. The mechanisms of the two components are explained in terms of intramolecular vibrational redistribution and intermolecular hydrogen-bonding, respectively. Ground and excited state free energies along an effective reaction coordinate are finally obtained allowing for a detailed analysis of the solvent mediated mechanism.

9.
Annu Rev Phys Chem ; 72: 489-513, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33561359

RESUMO

Multiscale models combining quantum mechanical and classical descriptions are a very popular strategy to simulate properties and processes of complex systems. Many alternative formulations have been developed, and they are now available in all of the most widely used quantum chemistry packages. Their application to the study of light-driven processes, however, is more recent, and some methodological and numerical problems have yet to be solved. This is especially the case for the polarizable formulation of these models, the recent advances in which we review here. Specifically, we identify and describe the most important specificities that the polarizable formulation introduces into both the simulation of excited-state dynamics and the modeling of excitation energy and electron transfer processes.

10.
J Chem Phys ; 153(22): 224108, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317291

RESUMO

We propose a general formalism for polarizable embedding models that can be applied to either continuum or atomistic polarizable models. After deriving such a formalism for both variational and non-variational models, we address the problem of coupling two polarizable models among themselves and to a quantum mechanical (QM) description in the spirit of multiscale quantum chemistry. We discuss general, model-independent coupling hypotheses and derive coupled polarization equations for all combinations of variational and non-variational models and discuss the embedding contributions to the analytical derivatives of the energy, with a particular focus on the elements of the Fock or Kohn-Sham matrix. We apply the general formalism to the derivation of the working equations for a three-layered, fully polarizable QM/MM/continuum strategy using the non-variational atomic multipole optimized energetics for biomolecular applications polarizable force field and the domain decomposition conductor-like screening model.

11.
Phys Chem Chem Phys ; 22(35): 19532-19541, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32844823

RESUMO

We present the implementation of excited state Born-Oppenheimer molecular dynamics (BOMD) using a polarizable QM/MM approach based on a time-dependent density functional theory (TDDFT) formulation and the AMOEBA force field. The implementation relies on an interface between Tinker and Gaussian software and it uses an algorithm for the calculation of QM/MM energy and forces which scales linearly with the number of MM atoms. The resulting code can perform TDDFT/AMOEBA BOMD simulations on real-life systems with standard computational resources. As a test case, the method is applied to the study of the mechanism of locally-excited to charge-transfer conversion in dimethylaminobenzonitrile in a polar solvent. Our simulations confirm that such a conversion is governed by the twisting of the dimethylamino group which is accompanied by an important reorientation of solvent molecules.

12.
Phys Chem Chem Phys ; 22(26): 14433-14448, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588851

RESUMO

Nowadays, hybrid QM/MM approaches are widely used to study (supra)molecular systems embedded in complex biological matrices. However, in their common formulation, mutual interactions between the quantum and classical parts are neglected. To go beyond such a picture, a polarizable embedding can be used. In this perspective, we focus on the induced point dipole formulation of polarizable QM/MM approaches and we show how efficient and linear scaling implementations have allowed their application to the modeling of complex biosystems. In particular, we discuss their use in the prediction of spectroscopies and in molecular dynamics simulations, including Born-Oppenheimer dynamics, enhanced sampling techniques and nonadiabatic descriptions. We finally suggest the theoretical and computational developments that still need to be achieved to overcome the limitations which have prevented so far larger diffusion of these methods.


Assuntos
Modelos Químicos , Teoria Quântica , Simulação de Dinâmica Molecular , Análise Espectral
13.
Biochim Biophys Acta Bioenerg ; 1861(4): 148049, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31386831

RESUMO

Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Simulação de Dinâmica Molecular , Processos Fotoquímicos/efeitos da radiação
14.
J Chem Theory Comput ; 15(11): 6061-6073, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31509412

RESUMO

In this work, we present the first implementation of the domain decomposition polarizable continuum model for a solute described at a quantum mechanical level of theory. After briefly recapitulating the theory, we discuss the coupling of ddPCM to a quantum mechanical level of theory based on the self-consistent field approach, i.e., Hartree-Fock, density functional theory, and semiempirical methods. We then present benchmarks of the new implementation, comparing it to a currently available state-of-the-art one, and use it to describe the structure and excitation properties of a large multichromophoric system.

15.
Chem Sci ; 10(42): 9650-9662, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32055335

RESUMO

The light-harvesting in photosynthetic purple bacteria can be tuned in response to the light conditions during cell growth. One of the used strategies is to change the energy of the excitons in the major fight-harvesting complex, commonly known as LH2. In the present study we report the first systematic investigation of the microscopic origin of the exciton tuning using three complexes, namely the common (high-light) and the low-light forms of LH2 from Rps. acidophila plus a third complex analogous to the PucD complex from Rps. palustris. The study is based on the combination of classical molecular dynamics of each complex in a lipid membrane and excitonic calculations based on a multiscale quantum mechanics/molecular mechanics approach including a polarizable embedding. From the comparative analysis, it comes out that the mechanisms that govern the adaptation of the complex to different light conditions use the different H-bonding environment around the bacteriochlorophyll pigments to dynamically control both internal and inter-pigment degrees of freedom. While the former have a large effect on the site energies, the latter significantly change the electronic couplings, but only the combination of the two effects can fully reproduce the tuning of the final excitons and explain the observed spectroscopic differences.

16.
Photosynth Res ; 137(2): 215-226, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29502240

RESUMO

The LH2 antenna complexes of purple bacteria occur, depending on light conditions, in various different spectroscopic forms, with a similar structure but different absorption spectra. The differences are related to point changes in the primary amino acid sequence, but the molecular-level relationship between these changes and the resulting spectrum is still not well understood. We undertook a systematic quantum chemical analysis of all the main factors that contribute to the exciton structure, looking at how the environment modulates site energies and couplings in the B800-850 and B800-820 spectroscopic forms of LH2. A multiscale approach combining quantum chemistry and an atomistic classical embedding has been used where mutual polarization effects between the two parts are taken into account. We find that the loss of hydrogen bonds following amino acid changes can only explain a part of the observed blue-shift in the B850 band. The coupling of excitonic states to charge-transfer states, which is different in the two forms, contributes with a similar amount to the overall blue-shift.


Assuntos
Proteínas de Bactérias/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Rodopseudomonas/fisiologia , Proteínas de Bactérias/química , Domínio Catalítico , Complexos de Proteínas Captadores de Luz/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...