Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Bioanal Chem ; 390(1): 343-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17985120

RESUMO

No universal approach has been reported for specific monitoring of the catalytic activity of a wide range of kinases in cells. The present study describes an original platform for detecting the autonomous activity of serine/threonine kinases in cells through the introduction of expression vectors encoding modified substrate kinase fusion proteins. The surrogate substrate used consists of the p53 tumor suppressor protein fused with individual kinase domains (Chk1, DYRK3, and Cdk5) at its carboxy-terminal through four tandem Gly-Gly-Gly-Gly-Ser repeats. After transfection into cells, phosphorylation of the p53 moiety could be specifically induced by the catalytic activity of kinases contained in the fusion protein. Moreover, p53 phosphorylation was significantly blocked when a kinase-inactive mutant was used as the fusion partner instead of the active kinase. Using this system, the cell-based evaluation of several Cdk5 inhibitors was demonstrated. Thus, this approach provides a novel platform for the specific, cell-based screening of inhibitors of a wide prospective range of protein kinases and is of tremendous potential for drug discovery efforts.


Assuntos
Quinase 5 Dependente de Ciclina/análise , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas Quinases/análise , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/metabolismo , Animais , Linhagem Celular , Quinase 1 do Ponto de Checagem , Chlorocebus aethiops , Quinase 5 Dependente de Ciclina/genética , Humanos , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Assay Drug Dev Technol ; 5(4): 523-33, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17767420

RESUMO

The kinase signaling cascades related to mitogen- and stress-activated protein kinase-1 and -2 (MSK1 and MSK2, respectively) are attractive targets for pharmaceutical intervention, especially for neural injury. Therefore, we have developed a high throughput and cost-effective detection platform for measuring selective activity of MSK1/MSK2 in cells. Through the serial monitoring of both the p38 mitogen-activated protein kinase (stress-activated protein kinase 2B)-MSK1/MSK2- cyclic AMP response element binding protein (CREB)/activating transcription factor 1 (ATF1) pathway and the p38-mammalian heat shock protein 27 (Hsp27) pathway in HeLa cells treated with anisomycin, two selective MSK1 inhibitors showed inhibition of CREB (Ser-133) and ATF1 (Ser-63) phosphorylation and no interference with Hsp-27 phosphorylation (Ser-82). On the other hand, the p38 inhibitor SB-220025 showed equipotent inhibition of CREB/ATF1 and Hsp27 phosphorylation. This study demonstrated that the specific inhibition of a target kinase could be subsequently monitored by a secondary assay that measures the intervention arising from the modulation of off-target kinases. Our established system is applicable to inhibitor screening and drug discovery related to MSK1/MSK2.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Anisomicina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Fosforilação , Plasmídeos/genética , Inibidores da Síntese de Proteínas/farmacologia , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Biomol Screen ; 12(6): 809-17, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17517898

RESUMO

Checkpoint kinase 1 (Chk1), a serine/threonine kinase, plays an important role in DNA damage checkpoint control and is an attractive target for cancer treatment. To develop a Chk1-specific cell-based assay, stable clones were established in which Chk1 kinase domain fused at its N-terminus with p53 through 4 tandem repeats of Gly-Gly-Gly-Gly-Ser was expressed in an inducible manner. Chk1 kinase specificity of the phosphorylation of fused p53 was confirmed by the experiments with a kinase-inactive Chk1. Only in the presence of an inducer molecule was phosphorylation of p53 at Ser-15 in the stable clones induced. Furthermore, its assay performance proved acceptable for high-throughput screening applications, judging from the Z' factor values (> 0.77). Finally, the cell-based assay thus established yielded structure-activity relationship data for a small set of test inhibitors of Chk1 within cells. Collectively, these results demonstrate that the established cell-based assay provides a novel and highly sensitive cellular platform for Chk1 inhibitor discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Marcação de Genes/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Estudos de Viabilidade , Regulação da Expressão Gênica , Genes Reporter , Genes p53 , Células HeLa , Humanos , Concentração Inibidora 50 , Modelos Biológicos , Fosforilação , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
4.
J Biomol Screen ; 12(6): 818-27, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17517901

RESUMO

The Ras/Raf signaling pathway has been recognized as an important process in cancer biology. Recently, activating mutations in the BRAF gene were reported to be present in approximately 66% of malignant melanomas as well as other malignancies such as colon cancer. Here, the authors report the development of a B-Raf-specific cellular assay to profile cell-active B-Raf inhibitors. Expression of the active B-Raf mutant (V600E) and the kinase-inactive form of its substrate, MEK1, was regulated by mifepristone, and the catalytic activity of B-Raf was monitored by following MEK1 phosphorylation. Target specificity was ensured because the phosphorylation of MEK1 was significantly inhibited when kinase-inactive B-Raf was used in place of the active kinase. A cellular c-Raf assay was similarly established to monitor the selectivity between B-Raf and c-Raf. Z' factor values were consistently above 0.50 with either kinase, indicating that assay performance was sufficiently robust for use as cellular profiling assays. The authors used this system to demonstrate that the selectivity profile of compounds targeted against B-Raf and c-Raf kinases could be quantitatively determined. This platform provides a quantitative cellular readout for a spectrum of specific inhibitors of B-Raf and c-Raf kinases that is particularly suitable for use in drug discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Células Cultivadas , Estudos de Viabilidade , Humanos , MAP Quinase Quinase 1/metabolismo , Fosforilação , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...