Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; : e30619, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946237

RESUMO

Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2),  l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.

2.
Carbohydr Polym ; 321: 121323, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739545

RESUMO

Highly resistant bacteria producing metallo-ß-lactamases (MBLs) to evade ß-lactam antibiotics, constitute a major cause of life-threatening infections world-wide. MBLs exert their hydrolytic action via Zn2+ cations in their active center. Presently, there are no approved drugs to target MBLs and combat the associated antimicrobial resistance (AMR). Towards this issue, we have prepared a family of cyclodextrins substituted with iminodiacetic acid (IDA) on their narrow side, while the wider side is either unmodified or per-2,3-O-methylated. The molecules form strong coordination complexes with Zn2+ or Ga3+ cations in aqueous solution. Free and metal-complexed compounds have been thoroughly characterized regarding structures, pH-dependent ionization states, distribution of species in solution, pKa values and metal-binding constants. At neutral pH the multi-anionic hosts bind up to four Zn2+ or Ga3+ cations. In vitro, 50 µΜ of the compounds achieve complete re-sensitization of MBL-producing Gram-negative clinical bacterial strains resistant to the carbapenems imipenem and meropenem. Moreover, the radioactive complex [67Ga]Ga-ß-IDACYD prepared, displays high radiochemical purity, sufficient stability both overtime and in the presence of human plasma apo-transferrin, thus providing an invaluable tool for future biodistribution and pharmacokinetic studies of ß-IDACYDin vivo, prerequisites for the development of therapeutic protocols.


Assuntos
Anti-Infecciosos , Complexos de Coordenação , Ciclodextrinas , Humanos , Distribuição Tecidual , Cátions , Complexos de Coordenação/farmacologia , Ciclodextrinas/farmacologia , Zinco
3.
Biochim Biophys Acta Gen Subj ; 1867(4): 130313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693454

RESUMO

Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.


Assuntos
Calmodulina , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Calmodulina/química , Mutação , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
4.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835732

RESUMO

Recent advances in experimental studies of nanoparticle-driven stabilization of chiral liquid-crystalline phases are highlighted. The stabilization is achieved via the nanoparticles' assembly in the defect lattices of the soft liquid-crystalline hosts. This is of significant importance for understanding the interactions of nanoparticles with topological defects and for envisioned technological applications. We demonstrate that blue phases are stabilized and twist-grain boundary phases are induced by dispersing surface-functionalized CdSSe quantum dots, spherical Au nanoparticles, as well as MoS2 nanoplatelets and reduced-graphene oxide nanosheets in chiral liquid crystals. Phase diagrams are shown based on calorimetric and optical measurements. Our findings related to the role of the nanoparticle core composition, size, shape, and surface coating on the stabilization effect are presented, followed by an overview of and comparison with other related studies in the literature. Moreover, the key points of the underlying mechanisms are summarized and prospects in the field are briefly discussed.

5.
Extremophiles ; 24(2): 293-306, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980943

RESUMO

Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.


Assuntos
Engenharia de Proteínas , Sequência de Aminoácidos , Proteínas de Bactérias , Consenso , DNA Bacteriano , Escherichia coli , Histonas , Ligação Proteica , Estabilidade Proteica
6.
Ann N Y Acad Sci ; 1448(1): 19-29, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30937913

RESUMO

Calmodulin (CaM) is a universal calcium (Ca2+ )-binding messenger that regulates many vital cellular events. In cardiac muscle, CaM associates with ryanodine receptor 2 (RyR2) and regulates excitation-contraction coupling. Mutations in human genes CALM1, CALM2, and CALM3 have been associated with life-threatening heart disorders, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia. A novel de novo LQTS-associated missense CaM mutation (E105A) was recently identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest. Herein, we report the first molecular characterization of the CaM E105A mutation. Expression of the CaM E105A mutant in zebrafish embryos resulted in cardiac arrhythmia and increased heart rate, suggestive of ventricular tachycardia. In vitro biophysical and biochemical analysis revealed that E105A confers a deleterious effect on protein stability and a reduced Ca2+ -binding affinity due to loss of cooperativity. Finally, the CaM E105A mutation resulted in reduced CaM-RyR2 interaction and defective modulation of ryanodine binding. Our findings suggest that the CaM E105A mutation dysregulates normal cardiac function by a complex mechanism involving alterations in both CaM-Ca2+ and CaM-RyR2 interactions.


Assuntos
Arritmias Cardíacas/genética , Calmodulina/genética , Calmodulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Animais , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Criança , Acoplamento Excitação-Contração/fisiologia , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/fisiopatologia , Peixe-Zebra
7.
Biochem J ; 475(24): 3933-3948, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30446606

RESUMO

The most common inherited cardiac disorder, hypertrophic cardiomyopathy (HCM), is characterized by thickening of heart muscle, for which genetic mutations in cardiac myosin-binding protein C3 (c-MYBPC3) gene, is the leading cause. Notably, patients with HCM display a heterogeneous clinical presentation, onset and prognosis. Thus, delineating the molecular mechanisms that explain how disparate c-MYBPC3 variants lead to HCM is essential for correlating the impact of specific genotypes on clinical severity. Herein, five c-MYBPC3 missense variants clinically associated with HCM were investigated; namely V1 (R177H), V2 (A216T), V3 (E258K), V4 (E441K) and double mutation V5 (V3 + V4), all located within the C1 and C2 domains of MyBP-C, a region known to interact with sarcomeric protein, actin. Injection of the variant complementary RNAs in zebrafish embryos was observed to recapitulate phenotypic aspects of HCM in patients. Interestingly, V3- and V5-cRNA injection produced the most severe zebrafish cardiac phenotype, exhibiting increased diastolic/systolic myocardial thickness and significantly reduced heart rate compared with control zebrafish. Molecular analysis of recombinant C0-C2 protein fragments revealed that c-MYBPC3 variants alter the C0-C2 domain secondary structure, thermodynamic stability and importantly, result in a reduced binding affinity to cardiac actin. V5 (double mutant), displayed the greatest protein instability with concomitant loss of actin-binding function. Our study provides specific mechanistic insight into how c-MYBPC3 pathogenic variants alter both functional and structural characteristics of C0-C2 domains leading to impaired actin interaction and reduced contractility, which may provide a basis for elucidating the disease mechanism in HCM patients with c-MYBPC3 mutations.


Assuntos
Actinas/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/metabolismo , Variação Genética/fisiologia , Mutação de Sentido Incorreto/fisiologia , Actinas/genética , Adulto , Animais , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Peixe-Zebra
8.
RSC Adv ; 8(72): 41480-41483, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559320

RESUMO

A novel sulfur-based platelet derivative was synthesized by reacting elemental sulfur with oleyl amine. The sulfur-oleyl amine (S-OA) derivative has an ionic salt form, layered morphology and forms a highly lamellar structure. Polarized optical microscopy (POM) clearly shows the birefringent lyotropic liquid crystalline behavior of the S-OA platelets dispersions.

9.
Int J Pharm ; 531(2): 480-491, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28473235

RESUMO

In an effort to identify the optimal cyclodextrin (CD) host for delivery of penicillins to mammalian cells that will also offer protection against ß-lactamase-induced hydrolysis, nuclear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC) have been employed to study the inclusion complexes formed in aqueous solution between designed CD derivatives and two aminopenicillins, ampicillin and amoxicillin, and two antistaphylococcal penicillins, methicillin and oxacillin. Anionic and cationic thioether-substituted-ß- and -γCD derivatives were thus synthesized and compared with the neutral, parent CDs for complexation with the penicillins. The synthesized derivatives were shown to present ∼20% elongated cavity space in solution. Moreover, the cationic ones are >98% protonated at physiological pH. The most efficient host was the positively charged octakis[6-(2-aminoethylthio)-6-deoxy]-γ-CD (γCys) that formed the strongest complex with oxacillin (Kb ∼1700M-1) in an enthalpically and entropically favorable process (ΔHb=-10.5kJ/mol,TΔSb=8.0kJ/mol). In vitro biological tests demonstrated that γCys reduces 2.3-fold the rate of hydrolysis of oxacillin in the presence of oxa-1 ß-lactamase while displaying cell crossing capability and efficient internalization into macrophages as well as a sufficiently safe cytotoxicity profile. Overall, γCys could be considered as a promising vehicle for protection and delivery of oxacillin.


Assuntos
Antibacterianos/administração & dosagem , Ciclodextrinas/química , Portadores de Fármacos/química , Oxacilina/administração & dosagem , Animais , Linhagem Celular , Macrófagos , Camundongos , beta-Lactamases
10.
FEBS J ; 283(24): 4502-4514, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27783455

RESUMO

Hereditary leukonychia is a rare genetic nail disorder characterized by distinctive whitening of the nail plate of all 20 nails. Hereditary leukonychia may exist as an isolated feature, or in simultaneous occurrence with other cutaneous or systemic pathologies. Associations between hereditary leukonychia and mutations in the gene encoding phospholipase C delta-1 (PLCδ1) have previously been identified. However, the molecular mechanisms underlying PLCδ1 mutations and hereditary leukonychia remain uncharacterized. In the present study, we introduced hereditary leukonychia-linked human PLCδ1 mutations (C209R, A574T and S740R) into equivalent residues of rat PLCδ1 (C188R, A553T and S719R), and investigated their effect on the biophysical and biochemical properties of the PLCδ1 protein. Our data suggest that these PLCδ1 mutations associated with hereditary leukonychia do not uniformly alter the enzymatic ability of this protein leading to loss/gain of function, but result in significantly divergent enzymatic properties. We demonstrate here for the first time the importance of PLC-mediated calcium (Ca2+ ) signalling within the manifestation of hereditary leukonychia. PLCδ1 is almost ubiquitous in mammalian cells, which may explain why hereditary leukonychia manifests in association with other systemic pathologies relating to keratin expression.


Assuntos
Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Animais , Sítios de Ligação/genética , Biocatálise , Western Blotting , Cálcio/metabolismo , Dicroísmo Circular , Estabilidade Enzimática , Humanos , Hidrólise , Hipopigmentação/genética , Cinética , Modelos Moleculares , Doenças da Unha/congênito , Doenças da Unha/genética , Fosfatidilinositol 4,5-Difosfato/química , Fosfolipase C delta/química , Ligação Proteica , Domínios Proteicos , Ratos , Temperatura
11.
Philos Trans A Math Phys Eng Sci ; 374(2074)2016 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-27402927

RESUMO

Materials with large caloric effect have the promise of realizing solid-state refrigeration which has potential to be more efficient and environmentally friendly compared with current cooling technologies. Recently, the focus of caloric effects investigations has shifted towards soft materials. An overview of recent direct measurements of the large electrocaloric effect (ECE) in a composite mixture of a liquid crystal and nanoparticles (NPs) and large elastocaloric (eC) effect in main-chain liquid crystal elastomers is given. In mixtures of 12CB liquid crystal with functionalized CdSSe NPs, an ECE exceeding 5 K was found in the vicinity of the isotropic to smectic A phase transition. It is shown that the NPs smear the isotropic to smectic coexistence range in which a large ECE is observed due to latent heat enhancement. NPs acting as traps for ions reduce the moving-ion density and consequently the Joule heating. Direct eC measurements indicate that the significant eC response can be found in main-chain liquid crystalline elastomers, but at a fraction of the stress field in contrast to other eC materials. Both soft materials could play a significant role as active cooling elements or parts of thermal diodes in development of new cooling devices.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

12.
Extremophiles ; 20(5): 695-709, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27342116

RESUMO

The histone-like DNA-binding proteins (HU) serve as model molecules for protein thermostability studies, as they function in different bacteria that grow in a wide range of temperatures and show sequence diversity under a common fold. In this work, we report the cloning of the hutth gene from Thermus thermophilus, the purification and crystallization of the recombinant HUTth protein, as well as its X-ray structure determination at 1.7 Å. Detailed structural and thermodynamic analyses were performed towards the understanding of the thermostability mechanism. The interaction of HUTth protein with plasmid DNA in solution has been determined for the first time with MST. Sequence conservation of an exclusively thermophilic order like Thermales, when compared to a predominantly mesophilic order (Deinococcales), should be subject, to some extent, to thermostability-related evolutionary pressure. This hypothesis was used to guide our bioinformatics and evolutionary studies. We discuss the impact of thermostability adaptation on the structure of HU proteins, based on the detailed evolutionary analysis of the Deinococcus-Thermus phylum, where HUTth belongs. Furthermore, we propose a novel method of engineering thermostable proteins, by combining consensus-based design with ancestral sequence reconstruction. Finally, through the structure of HUTth, we are able to examine the validity of these predictions. Our approach represents a significant advancement, as it explores for the first time the potential of ancestral sequence reconstruction in the divergence between a thermophilic and a mainly mesophilic taxon, combined with consensus-based engineering.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Temperatura Alta , Thermus thermophilus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ligação Proteica , Estabilidade Proteica , Thermus thermophilus/metabolismo
13.
Biopolymers ; 105(9): 642-52, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27114109

RESUMO

X-ray crystallography is the most powerful method for determining three-dimensional structures of proteins to (near-)atomic resolution, but protein crystallization is a poorly explained and often intractable phenomenon. Differential Scanning Calorimetry was used to measure the thermodynamic parameters (ΔG, ΔH, ΔS) of temperature-driven unfolding of two globular proteins, lysozyme, and ribonuclease A, in various salt solutions. The mixtures were categorized into those that were conducive to crystallization of the protein and those that were not. It was found that even fairly low salt concentrations had very large effects on thermodynamic parameters. High concentrations of salts conducive to crystallization stabilized the native folded forms of proteins, whereas high concentrations of salts that did not crystallize them tended to destabilize them. Considering the ΔH and TΔS contributions to the ΔG of unfolding separately, high concentrations of crystallizing salts were found to enthalpically stabilize and entropically destabilize the protein, and vice-versa for the noncrystallizing salts. These observations suggest an explanation, in terms of protein stability and entropy of hydration, of why some salts are good crystallization agents for a given protein and others are not. This in turn provides theoretical insight into the process of protein crystallization, suggesting ways of predicting and controlling it. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 642-652, 2016.


Assuntos
Modelos Químicos , Muramidase/química , Desdobramento de Proteína , Ribonuclease Pancreático/química , Termodinâmica , Cristalização
14.
Biochim Biophys Acta ; 1850(11): 2168-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26164367

RESUMO

Calmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF). Herein, we describe how two CPVT- (N54I & N98S) and three LQTS-associated (D96V, D130G & F142L) CaM mutations result in alteration of their biochemical and biophysical properties. Ca(2+)-binding studies indicate that the CPVT-associated CaM mutations, N54I & N98S, exhibit the same or a 3-fold reduced Ca(2+)-binding affinity, respectively, versus wild-type CaM, whereas the LQTS-associated CaM mutants, D96V, D130G & F142L, display more profoundly reduced Ca(2+)-binding affinity. In contrast, all five CaM mutations confer a disparate RyR2 interaction and modulation of [(3)H]ryanodine binding to RyR2, regardless of CPVT or LQTS association. Our findings suggest that the clinical presentation of CPVT or LQTS associated with these five CaM mutations may involve both altered intrinsic Ca(2+)-binding as well as defective interaction with RyR2.


Assuntos
Calmodulina/genética , Síndrome do QT Longo/etiologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Taquicardia Ventricular/etiologia , Animais , Cálcio/metabolismo , Suínos
15.
Biochem Biophys Rep ; 3: 108-116, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29124173

RESUMO

Chitinase 60 from the psychrophilic bacterium Moritella marina (MmChi60) is a four-domain protein whose structure revealed flexible hinge regions between the domains, yielding conformations in solution that range from fully extended to compact. The catalytic domain is a shallow-grooved TIM-barrel. Heat-induced denaturation experiments of the wild-type and mutants resulting from the deletions of the two-Ig-like domains and the chitin binding domain reveal calorimetric profiles that are consistent with non-collaborative thermal unfolding of the individual domains, a property that must be associated to the "hinge-regions". The calorimetric measurements of the (ß/α)8 catalytic domain reveal that the thermal unfolding is a slow-relaxation transition exhibiting a stable, partially structured intermediate state. Circular dichroism provides evidence that the intermediate exhibits features of a molten globule i.e., loss of tertiary structure while maintaining the secondary structural elements of the native. GdnHCl-induced denaturation studies of the TIM-barrel demonstrate an extraordinarily high resistance to the denaturant. Slow-relaxation kinetics characterize the unfolding with equilibration times exceeding six days, a property that is for the first time observed for a psychrophilic TIM barrel. On the other hand, the thermodynamic stability is ΔG=6.75±1.3 kcal/mol, considerably lower than for structural-insertions-containing barrels. The mutant E153Q used for the crystallographic studies of MmChi60 complexes with NAG ligands has a much lower stability than the wild-type.

16.
Artigo em Inglês | MEDLINE | ID: mdl-25314459

RESUMO

By means of high-resolution ac calorimetry and polarizing optical microscopy, it is demonstrated that surface-functionalized spherical CdSSe nanoparticles induce a twist-grain boundary phase when dispersed in a chiral liquid crystal. These nanoparticles can effectively stabilize the one-dimensional lattice of screw dislocations, thus establishing the twist-grain boundary order between the cholesteric and the smectic-A phases. A Landau-de Gennes-Ginzburg model is used to analyze the impact of nanoparticles on widening the temperature range of molecular organizations possessing a lattice of screw dislocations. We show that in addition to the defect-core-replacement mechanism, the saddle-splay elasticity may also play a significant role.


Assuntos
Modelos Teóricos , Nanopartículas/química , Elasticidade , Cristais Líquidos/química , Propriedades de Superfície , Termodinâmica
17.
Mol Hum Reprod ; 20(10): 938-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25057041

RESUMO

Mature mammalian oocytes undergo a prolonged series of cytoplasmic calcium (Ca(2+)) oscillations at fertilization that are the cause of oocyte activation. The Ca(2+) oscillations in mammalian oocytes are driven via inositol 1,4,5-trisphosphate (IP3) generation. Microinjection of the sperm-derived phospholipase C-zeta (PLCζ), which generates IP3, causes the same pattern of Ca(2+) oscillations as observed at mammalian fertilization and it is thought to be the physiological agent that triggers oocyte activation. However, another sperm-specific protein, 'post-acrosomal WW-domain binding protein' (PAWP), has also been reported to elicit activation when injected into mammalian oocytes, and to produce a Ca(2+) increase in frog oocytes. Here we have investigated whether PAWP can induce fertilization-like Ca(2+) oscillations in mouse oocytes. Recombinant mouse PAWP protein was found to be unable to hydrolyse phosphatidylinositol 4,5-bisphosphate in vitro and did not cause any detectable Ca(2+) release when microinjected into mouse oocytes. Microinjection with cRNA encoding either the untagged PAWP, or yellow fluorescent protein (YFP)-PAWP, or luciferase-PAWP fusion proteins all failed to trigger Ca(2+) increases in mouse oocytes. The lack of response in mouse oocytes was despite PAWP being robustly expressed at similar or higher concentrations than PLCζ, which successfully initiated Ca(2+) oscillations in every parallel control experiment. These data suggest that sperm-derived PAWP is not involved in triggering Ca(2+) oscillations at fertilization in mammalian oocytes.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Oócitos/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Animais , Proteínas de Bactérias , Sinalização do Cálcio , Proteínas de Transporte/administração & dosagem , Feminino , Inositol 1,4,5-Trifosfato/biossíntese , Proteínas Luminescentes , Masculino , Camundongos , Microinjeções , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/administração & dosagem , RNA Complementar/administração & dosagem , RNA Complementar/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Plasma Seminal/administração & dosagem , Interações Espermatozoide-Óvulo
18.
FEBS Lett ; 588(17): 2898-902, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25036739

RESUMO

Calmodulin (CaM) association with the cardiac muscle ryanodine receptor (RyR2) regulates excitation-contraction coupling. Defective CaM-RyR2 interaction is associated with heart failure. A novel CaM mutation (CaM(F90L)) was recently identified in a family with idiopathic ventricular fibrillation (IVF) and early onset sudden cardiac death. We report the first biochemical characterization of CaM(F90L). F90L confers a deleterious effect on protein stability. Ca(2+)-binding studies reveal reduced Ca(2+)-binding affinity and a loss of co-operativity. Moreover, CaM(F90L) displays reduced RyR2 interaction and defective modulation of [(3)H]ryanodine binding. Hence, dysregulation of RyR2-mediated Ca(2+) release via aberrant CaM(F90L)-RyR2 interaction is a potential mechanism that underlies familial IVF.


Assuntos
Calmodulina/genética , Calmodulina/metabolismo , Morte Súbita Cardíaca , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fibrilação Ventricular/genética , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/química , Humanos , Modelos Moleculares , Conformação Proteica , Retículo Sarcoplasmático/metabolismo
19.
Mol Hum Reprod ; 20(6): 489-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24478462

RESUMO

A sperm-specific phospholipase C-zeta (PLCζ) is believed to play an essential role in oocyte activation during mammalian fertilization. Sperm PLCζ has been shown to trigger a prolonged series of repetitive Ca(2+) transients or oscillations in oocytes that precede activation. This remarkable intracellular Ca(2+) signalling phenomenon is a distinctive characteristic observed during in vitro fertilization by sperm. Previous studies have notably observed an apparent differential ability of PLCζ from disparate mammalian species to trigger Ca(2+) oscillations in mouse oocytes. However, the molecular basis and confirmation of the apparent PLCζ species difference in activity remains to be provided. In the present study, we provide direct evidence for the superior effectiveness of human PLCζ relative to mouse PLCζ in generating Ca(2+) oscillations in mouse oocytes. In addition, we have designed and constructed a series of human/mouse PLCζ chimeras to enable study of the potential role of discrete PLCζ domains in conferring the enhanced Ca(2+) signalling potency of human PLCζ. Functional analysis of these human/mouse PLCζ domain chimeras suggests a novel role of the EF-hand domain in the species-specific differences in PLCζ activity. Our empirical observations are compatible with a basic mathematical model for the Ca(2+) dependence of generating cytoplasmic Ca(2+) oscillations in mammalian oocytes by sperm PLCζ.


Assuntos
Cálcio/metabolismo , Oócitos/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Interações Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Adulto , Animais , Sinalização do Cálcio , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Fertilização in vitro , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Oócitos/citologia , Fosfoinositídeo Fosfolipase C/metabolismo , Estrutura Terciária de Proteína , Especificidade da Espécie , Espermatozoides/citologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-24125282

RESUMO

Spherical CdSe nanoparticles, surface-treated with oleylamine and tri-octylphosphine, dispersed in ferroelectric liquid crystals, can efficiently target disclination lines, substantially altering the macroscopic properties of the host compound. Here we present an ac calorimetry and x-ray diffraction study demonstrating that for a large range of nanoparticle concentrations the smectic-A layer thickness increases monotonically. This provides evidence for enhanced accumulation of nanoparticles at the smectic layers. Our results for the Smectic-A (SmA) to chiral smectic-C (SmC) phase transition of the liquid crystal S-(+)4-(2'-methylbutyl)phenyl-4'-n-octylbiphenyl-4-carboxylate (CE8) reveal that the character of the transition is profoundly changed as a function of the nanoparticle concentration. Large transition temperature shifts are recorded. Moreover, the heat-capacity peaks exhibit a crossover trend to a step-like anomaly. This behavior may be linked to the weakening of the SmA and SmC order parameter coupling responsible for the observed near-tricritical, mean-field character of the transition in bulk CE8. At lower temperatures, the presence of nanoparticles disrupts the phase sequence involving the tilted hexatic phases most likely by obstructing the establishment of long-range bond-orientational order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...