Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Res Pract ; 237: 154010, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843034

RESUMO

Cancer stem cells (CSCs) as a small subpopulation in tumor bulk are believed to initiate tumor formation and are responsible for the resistance to cancer therapy. The proliferation and differentiation of CSCs result in heterogeneity in a tumor which increases the chance of tumor survival and invasion. Many signaling pathways are abnormally activated or repressed in CSCs. Understanding these pathways and the metabolisms in CSCs may help targeted therapy in drug-resistant tumors. The PI3K/Akt/mTOR pathway is one of the major signaling pathways in CSCs involved in the maintenance of stemness, proliferation, differentiation, epithelial to mesenchymal transition (EMT), migration, and autophagy. Thus, suppressing the PI3K/Akt/mTOR pathway with inhibitors might be a promising strategy for targeted cancer therapy. Although the pathway is well-recognized and reviewed in tumor bulks, the functions in CSCs have not been well focused. Here, we reviewed the PI3K/Akt/mTOR signaling pathway and its functions in CSCs and addressed the potential therapeutic applications in drug-resistant tumors.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transição Epitelial-Mesenquimal , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Neoplasias/patologia , Linhagem Celular Tumoral , Proliferação de Células
2.
Inflammopharmacology ; 29(5): 1307-1315, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283371

RESUMO

Myeloid suppressor cells (MDSCs) are an important class of immune-regulating cells that can suppress T cell function. Most of our knowledge about the function of MDSC comes from studies of cancer models. Recent studies, however, have greatly contributed to the description of MDSC involvement in autoimmune diseases. They are known as a cell population that may negatively affect immune responses by regulating the function of CD4+ and CD8+ cells, which makes them an attractive target for autoimmune diseases therapy. However, many questions about MDSC activation, differentiation, and inhibitory functions remain unanswered. In this study, we have summarized the role of MDSCs in various autoimmune diseases, and the potential of targeting them for therapeutic benefits has been discussed.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Células Supressoras Mieloides/imunologia , Animais , Doenças Autoimunes/terapia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos
4.
Nature ; 543(7643): 65-71, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28199314

RESUMO

The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.


Assuntos
Carcinoma Neuroendócrino/genética , Genoma Humano/genética , Genômica , Neoplasias Pancreáticas/genética , Sequência de Bases , Proteínas de Ligação a Calmodulina/genética , Montagem e Desmontagem da Cromatina/genética , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , DNA Glicosilases/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Proteína EWS de Ligação a RNA , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/metabolismo , Telômero/genética , Telômero/metabolismo
5.
Gastroenterology ; 152(1): 68-74.e2, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856273

RESUMO

Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Reparo de Erro de Pareamento de DNA/genética , Mutação , Neoplasias Pancreáticas/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Feminino , Genoma , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909576

RESUMO

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Histona Desmetilases/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Receptores Citoplasmáticos e Nucleares/genética , Análise de Sobrevida , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra
8.
J Pathol ; 237(3): 363-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26172396

RESUMO

Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2) = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Análise Mutacional de DNA , Ativação Enzimática , Amplificação de Genes , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Ligantes , Terapia de Alvo Molecular , Mutação , Fenótipo , Fosforilação , Medicina de Precisão , Valor Preditivo dos Testes , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Microambiente Tumoral
9.
Nature ; 521(7553): 489-94, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017449

RESUMO

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genoma Humano/genética , Neoplasias Ovarianas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Estudos de Coortes , Ciclina E/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Metilação de DNA , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Genes da Neurofibromatose 1 , Mutação em Linhagem Germinativa/genética , Humanos , Mutagênese/genética , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas/genética , Proteína do Retinoblastoma/genética
10.
Nature ; 518(7540): 495-501, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719666

RESUMO

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Assuntos
Análise Mutacional de DNA , Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Reparo do DNA/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Marcadores Genéticos/genética , Instabilidade Genômica/genética , Genótipo , Humanos , Camundongos , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/tratamento farmacológico , Platina/farmacologia , Mutação Puntual/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 5: 5224, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25351503

RESUMO

Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n=40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Carcinogênese/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Rearranjo Gênico/genética , Genoma Humano/genética , Carcinogênese/patologia , Quebra Cromossômica , Cromossomos Humanos/genética , Humanos , Mutação/genética
12.
Biotechniques ; 57(1): 31-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005691

RESUMO

Somatic rearrangements, which are commonly found in human cancer genomes, contribute to the progression and maintenance of cancers. Conventionally, the verification of somatic rearrangements comprises many manual steps and Sanger sequencing. This is labor intensive when verifying a large number of rearrangements in a large cohort. To increase the verification throughput, we devised a high-throughput workflow that utilizes benchtop next-generation sequencing and in-house bioinformatics tools to link the laboratory processes. In the proposed workflow, primers are automatically designed. PCR and an optional gel electrophoresis step to confirm the somatic nature of the rearrangements are performed. PCR products of somatic events are pooled for Ion Torrent PGM and/or Illumina MiSeq sequencing, the resulting sequence reads are assembled into consensus contigs by a consensus assembler, and an automated BLAT is used to resolve the breakpoints to base level. We compared sequences and breakpoints of verified somatic rearrangements between the conventional and high-throughput workflow. The results showed that next-generation sequencing methods are comparable to conventional Sanger sequencing. The identified breakpoints obtained from next-generation sequencing methods were highly accurate and reproducible. Furthermore, the proposed workflow allows hundreds of events to be processed in a shorter time frame compared with the conventional workflow.


Assuntos
Pontos de Quebra do Cromossomo , Cromossomos Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Bases , Carcinoma Ductal Pancreático/genética , Aberrações Cromossômicas , Primers do DNA , Humanos , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias Pancreáticas/genética , Reação em Cadeia da Polimerase/métodos , Fluxo de Trabalho
13.
Genome Biol ; 15(3): R51, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24629056

RESUMO

BACKGROUND: MicroRNAs (miRNAs) bind to mRNAs and target them for translational inhibition or transcriptional degradation. It is thought that most miRNA-mRNA interactions involve the seed region at the 5' end of the miRNA. The importance of seed sites is supported by experimental evidence, although there is growing interest in interactions mediated by the central region of the miRNA, termed centered sites. To investigate the prevalence of these interactions, we apply a biotin pull-down method to determine the direct targets of ten human miRNAs, including four isomiRs that share centered sites, but not seeds, with their canonical partner miRNAs. RESULTS: We confirm that miRNAs and their isomiRs can interact with hundreds of mRNAs, and that imperfect centered sites are common mediators of miRNA-mRNA interactions. We experimentally demonstrate that these sites can repress mRNA activity, typically through translational repression, and are enriched in regions of the transcriptome bound by AGO. Finally, we show that the identification of imperfect centered sites is unlikely to be an artifact of our protocol caused by the biotinylation of the miRNA. However, the fact that there was a slight bias against seed sites in our protocol may have inflated the apparent prevalence of centered site-mediated interactions. CONCLUSIONS: Our results suggest that centered site-mediated interactions are much more frequent than previously thought. This may explain the evolutionary conservation of the central region of miRNAs, and has significant implications for decoding miRNA-regulated genetic networks, and for predicting the functional effect of variants that do not alter protein sequence.


Assuntos
MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Sítios de Ligação , Genoma Humano , Células HEK293 , Humanos , MicroRNAs/genética , RNA Mensageiro/genética
14.
PLoS One ; 8(11): e74380, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250782

RESUMO

Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.


Assuntos
Biologia Computacional , Neoplasias/genética , Mutação Puntual/genética , Software , Variações do Número de Cópias de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/patologia , Reação em Cadeia da Polimerase/métodos
15.
Nature ; 491(7424): 399-405, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23103869

RESUMO

Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.


Assuntos
Axônios/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Genoma/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Animais , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos , Mutação , Proteínas/genética , Transdução de Sinais
16.
Genome Res ; 21(12): 2014-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22042643

RESUMO

Recent RNA-sequencing studies have shown remarkable complexity in the mammalian transcriptome. The ultimate impact of this complexity on the predicted proteomic output is less well defined. We have undertaken strand-specific RNA sequencing of multiple cellular RNA fractions (>20 Gb) to uncover the transcriptional complexity of human embryonic stem cells (hESCs). We have shown that human embryonic stem (ES) cells display a high degree of transcriptional diversity, with more than half of active genes generating RNAs that differ from conventional gene models. We found evidence that more than 1000 genes express long 5' and/or extended 3'UTRs, which was confirmed by "virtual Northern" analysis. Exhaustive sequencing of the membrane-polysome and cytosolic/untranslated fractions of hESCs was used to identify RNAs encoding peptides destined for secretion and the extracellular space and to demonstrate preferential selection of transcription complexity for translation in vitro. The impact of this newly defined complexity on known gene-centric network models such as the Plurinet and the cell surface signaling machinery in human ES cells revealed a significant expansion of known transcript isoforms at play, many predicting possible alternative functions based on sequence alterations within key functional domains.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Células-Tronco Embrionárias/metabolismo , Modelos Genéticos , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes/citologia , Análise de Sequência de RNA/métodos
17.
BMC Genomics ; 12: 441, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21888672

RESUMO

BACKGROUND: The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic in situ screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models. RESULTS: To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq) to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section in situ hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs. CONCLUSION: The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events.


Assuntos
Rim/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Processamento Alternativo , Animais , Éxons , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Rim/embriologia , Camundongos , Organogênese , RNA Antissenso/genética , Transcrição Gênica
18.
PLoS One ; 6(5): e20057, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629697

RESUMO

In response to the growing need for functional analysis of the human genome, we have developed a platform for high-throughput functional screening of genes overexpressed from lentiviral vectors. Protein-coding human open reading frames (ORFs) from the Mammalian Gene Collection were transferred into lentiviral expression vector using the highly efficient Gateway recombination cloning. Target ORFs were inserted into the vector downstream of a constitutive promoter and upstream of an IRES controlled GFP reporter, so that their transfection, transduction and expression could be monitored by fluorescence. The expression plasmids and viral packaging plasmids were combined and transfected into 293T cells to produce virus, which was then used to transduce the screening cell line. We have optimised the transfection and transduction procedures so that they can be performed using robotic liquid handling systems in arrayed 96-well microplate, one-gene-per-well format, without the need to concentrate the viral supernatant. Since lentiviruses can infect both dividing and non-dividing cells, this system can be used to overexpress human ORFs in a broad spectrum of experimental contexts. We tested the platform in a 1990 gene pilot screen for genes that can increase proliferation of the non-tumorigenic mammary epithelial cell line MCF-10A after removal of growth factors. Transduced cells were labelled with the nucleoside analogue 5-ethynyl-2'-deoxyuridine (EdU) to detect cells progressing through S phase. Hits were identified using high-content imaging and statistical analysis and confirmed with vectors using two different promoters (CMV and EF1α). The screen demonstrates the reliability, versatility and utility of our screening platform, and identifies novel cell cycle/proliferative activities for a number of genes.


Assuntos
Lentivirus/genética , Fases de Leitura Aberta/genética , Western Blotting , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Humanos , Modelos Genéticos , Plasmídeos/genética
19.
Genome Biol ; 12(12): R126, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22208850

RESUMO

BACKGROUND: Variants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules. RESULTS: To assess the biological relevance of isomiRs, we have performed ultra-deep miRNA-seq on ten adult human tissues, and created an analysis pipeline called miRNA-MATE to align, annotate, and analyze miRNAs and their isomiRs. We find that isomiRs share sequence and expression characteristics with canonical miRNAs, and are generally strongly correlated with canonical miRNA expression. A large proportion of isomiRs potentially derive from AGO2 cleavage independent of Dicer. We isolated polyribosome-associated mRNA, captured the mRNA-bound miRNAs, and found that isomiRs and canonical miRNAs are equally associated with translational machinery. Finally, we transfected cells with biotinylated RNA duplexes encoding isomiRs or their canonical counterparts and directly assayed their mRNA targets. These studies allow us to experimentally determine genome-wide mRNA targets, and these experiments showed substantial overlap in functional mRNA networks suppressed by both canonical miRNAs and their isomiRs. CONCLUSIONS: Together, these results find isomiRs to be biologically relevant and functionally cooperative partners of canonical miRNAs that act coordinately to target pathways of functionally related genes. This work exposes the complexity of the miRNA-transcriptome, and helps explain a major miRNA paradox: how specific regulation of biological processes can occur when the specificity of miRNA targeting is mediated by only 6 to 11 nucleotides.


Assuntos
Proteínas Argonautas/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , RNA Mensageiro/genética , Sequência de Bases , Biotinilação , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/classificação , MicroRNAs/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ribonuclease III/genética , Alinhamento de Sequência , Transcriptoma , Transfecção
20.
Genome Res ; 20(8): 1052-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20508144

RESUMO

KLF1 regulates a diverse suite of genes to direct erythroid cell differentiation from bipotent progenitors. To determine the local cis-regulatory contexts and transcription factor networks in which KLF1 operates, we performed KLF1 ChIP-seq in the mouse. We found at least 945 sites in the genome of E14.5 fetal liver erythroid cells which are occupied by endogenous KLF1. Many of these recovered sites reside in erythroid gene promoters such as Hbb-b1, but the majority are distant to any known gene. Our data suggests KLF1 directly regulates most aspects of terminal erythroid differentiation including production of alpha- and beta-globin protein chains, heme biosynthesis, coordination of proliferation and anti-apoptotic pathways, and construction of the red cell membrane and cytoskeleton by functioning primarily as a transcriptional activator. Additionally, we suggest new mechanisms for KLF1 cooperation with other transcription factors, in particular the erythroid transcription factor GATA1, to maintain homeostasis in the erythroid compartment.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , Fatores de Transcrição Kruppel-Like/genética , Animais , Apoptose/genética , Sequência de Bases , Citoesqueleto/genética , Membrana Eritrocítica/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Expressão Gênica , Globinas/biossíntese , Globinas/genética , Heme/biossíntese , Heme/genética , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...